

(Affiliated Colleges)

401 - M.Sc. Mathematics

Programme Structure and Scheme of Examination (under CBCS)

(Applicable to the candidates admitted from the academic year 2023 - 2024 onwards)

			Credit	Hours/ Week	Maximum Marks		
Part	Course Code	Study Components & Course Title			CIA	ESE	Total
		SEMESTER – I					
	23PMATC11	Core - I: Algebraic Structures.	5	7	25	75	100
	23PMATC12	Core - II: Real Analysis I	5	7	25	75	100
	23PMATC13	Core - III: Ordinary Differential Equations	4	6	25	75	100
		Elective – I:	3	5	25	75	100
	23PMATE14-1	Graph Theory and Applications (or)					
Α	23PMATE14-2	Programming in C++					
	23PMATE14-3	Formal Languages and Automata Theory					
		Elective-II :	3	5	25	75	100
	23PMATE15-1	Discrete Mathematics (or)					
	23PMATE15-2	Fuzzy Sets and Applications/ (or)					
	23PMATE15-3	Optimization Techniques					
		Total	20	30			500
		SEMESTER – II					
	23PMATC21	Core – IV: Advanced Algebra	5	6	25	75	100
	23PMATC22	Core – V: Real Analysis II	5	6	25	75	100
	23PMATC23	Core – VI: Partial Differential Equations	4	6	25	75	100
		Elective – III :					
	23PMATE24-1	Mathematical Statistics (or)	3	4	25	75	100
A	23PMATE24-2	Tensor Analysis and Relativity Theory (or)					
	23PMATE24-3	Algebraic Topology					
		Elective – IV :					
	23PMATE25-1	Wavelets (or)	3	4	25	75	100
	23PMATE25-2	Mathematical Modelling (or)					
	23PMATE25-3	Calculus of Variations and Integral Equations					
		Skill Enhancement Course (SEC-I):	2	4	25	75	100
В (1)	23PMATS26	Mathematical Documentation using LATEX)	2	4	25	15	100
		Total	22	30			600

		SEMESTER – III					
А	23PMATC31	Core -VII: Complex Analysis	5	6	25	75	100
	23PMATC32	Core - VIII: Probability Theory	5	6	25	75	100
	23PMATC33	Core - IX: Topology	5	6	25	75	100
	23PMATC34	Core – X : Mechanics	4	6	25	75	100
	23PMATE35-1 23PMATE35-2	Elective – V: Stochastic Processes (or) Advanced Numerical Analysis	3	3	25	75	100
B(i)	23PMATS36	Skill Enhancement Course (SEC-II): Statistics with SCILAB	2	3	25	75	100
B(ii)	23PMATI37	Summer Internship*	2	-	25	75	100
		Total	26	30			700
		SEMESTER – IV					1
А	23PMATC41	Core -XI: Functional Analysis	5	6	25	75	100
	23PMATC42	Core – XII: Differential Geometry	5	6	25	75	100
	23PMATD43	Project with Viva -Voce	7	10	25	75	100
	23PMATE44-1 23PMATE44-2	Elective – VI : Resource Management Techniques (or) Python Programming (20% Theory + 80% Practical)**	3	4	25	75	100
B (i)	23PMATS45	Skill Enhancement Course (SEC-III)/ Professional Competency Skill: Mathematics for Competitive Examinations	2	4	25	75	100
C	23PMATX46	Extension Activity	1	-	100	-	100
		Total	23	30			600
			91				2400

* Students should complete two weeks of internship before the commencement of III semester.

** Evaluation is to be done both for theory (15 marks) and practical (60 marks) components separately by the examiners who will be conducting the practical and the marks should be awarded out of 75. Questions for the theory and practical are to be set by the concerned examiner.

Component-wise Credit Distribution

Part	Courses	Sem I	Sem II	Sem III	Sem IV	Total
Α	Core (including Practical and Project)	14	14	19	17	64
	Elective	6	6	3	3	18
B(i)	Skill Enhancement Course	-	2	2	2	6
B(ii)	Summer Internship	-	-	2	-	2
С	Extension Activity	-	-	-	1	1
						91

Part A and B(i) component will be taken into account for CGPA calculation for the post graduate programme and the other components Part B(ii) and C have to be completed during the duration of the programme as per the norms, to be eligible for obtaining PG degree.

Programme Outcomes (POs)

PO1: Problem Solving Skill

Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context.

PO2: Decision Making Skill

Foster analytical and critical thinking abilities for data-based decision-making.

PO3: Ethical Value

Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.

PO4: Communication Skill

Ability to develop communication, managerial and interpersonal skills.

PO5: Individual and Team Leadership Skill

Capability to lead themselves and the team to achieve organizational goals.

PO6: Employability Skill

Inculcate contemporary business practices to enhance employability skills in the competitive environment.

PO7: Entrepreneurial Skill

Equip with skills and competencies to become an entrepreneur.

PO8: Contribution to Society

Succeed in career endeavors and contribute significantly to society.

PO 9 Multicultural competence

Possess knowledge of the values and beliefs of multiple cultures and a global perspective.

PO 10: Moral and ethical awareness/reasoning

Ability to embrace moral/ethical values in conducting one's life.

PSO1 – Placement

To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions.

PSO 2 - Entrepreneur

To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.

PSO3 – Research and Development

Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.

PSO4 – Contribution to Business World

To produce employable, ethical and innovative professionals to sustain in the dynamic business world.

PSO 5 – Contribution to the Society

To contribute to the development of the society by collaborating with stakeholders for mutual benefit.

Programme Specific Outcomes:

PSO1: Acquire good knowledge and understanding, to solve specific theoretical & applied problems in different area of mathematics & statistics.

PSO2: Understand, formulate, develop mathematical arguments, logically and use quantitative models to address issues arising in social sciences, business and other context /fields.

PSO3: To prepare the students who will demonstrate respectful engagement with other's ideas, behaviors, beliefs and apply diverse frames of references to decisions and actions.

To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.

To encourage practices grounded in research that comply with employment laws, leading the organization towards growth and development.

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)can be carried out accordingly, assigning the appropriate level in the grids:

			Po	S		PSC				
	1	2	3	4	5	6	•••	1	2	
CLO1										
CLO2										
CLO3										
CLO4										
CLO5										

23PMATC11: ALGEBRAIC STRUCTURES

Objectives of the Course	To introduce the concepts and to develop working knowledge on class
	equation, solvability of groups, finite abelian groups, linear
	transformations, real quadratic forms
Course Outline	UNIT-I : Counting Principle - Class equation for finite groups and its
	applications - Sylow's theorems (For theorem 2.12.1, First proof only).
	Chapter 2: Sections 2.11 and 2.12 (Omit Lemma 2.12.5)
	UNIT-II : Direct products - Finite abelian groups- Modules
	Chapter 2: Section 2.13 and 2.14 (Theorem 2.14.1 only)
	Chapter 4: Section 4.5
	UNIT-III : Linear Transformations: Canonical forms – Triangular form -
	Nilpotent transformations.
	Chapter 6: Sections 6.4, 6.5
	UNIT-IV : Jordan form - rational canonical form.
	Chapter 6 : Sections 6.6 and 6.7
	UNIT-V: Trace and transpose - Hermitian, unitary, normal
	transformations, real quadratic form.
	Chapter 6 : Sections 6.8, 6.10 and 6.11 (Omit 6.9)
Extended Professional	Questions related to the above topics, from various competitive
Component (is a part of	examinations UPSC / TRB / NET / UGC - CSIR / GATE / TNPSC /
internal component only,	others to be solved
Not to be included in the	(To be discussed during the Tutorial hour)
External Examination	
question paper)	
Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional
course	Competency, Professional Communication and Transferrable Skill
Recommended Text	I.N. Herstein. Topics in Algebra (II Edition) Wiley Eastern Limited, New
	Delhi, 1975.
Reference Books	1. M.Artin, <i>Algebra</i> , Prentice Hall of India, 1991.
	2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, <i>Basic Abstract Algebra</i>
	(II Edition) Cambridge University Press, 1997. (Indian Edition)
	3. I.S.Luther and I.B.S.Passi, <i>Algebra</i> , Vol. I –Groups(1996); Vol. II
	Rings, Narosa Publishing House, New Delhi, 1999
	4. D.S.Malik, J.N. Mordeson and M.K.Sen, Fundamental of Abstract
	Algebra, McGraw Hill (International Edition), New York. 1997.
	5. N.Jacobson, <i>Basic Algebra</i> , Vol. I & II W.H.Freeman (1980); also
	published by Hindustan Publishing Company, New Delhi.
Website and	http://mathforum.org. http://ocw.mit.edu/ocwweb/Mathematics
e-Learning Source	http://www.opensource.org, www.algebra.com

Students will be able to

CLO 1: Recall basic counting principle, define class equations to solve problems, explain Sylow's theorems and apply the theorem to find number of Sylow subgroups

CLO 2: Define Solvable groups, define direct products, examine the properties of finite abelian groups, define modules

CLO 3: Define similar Transformations, define invariant subspace, explore the properties of triangular matrix, to find the index of nilpotence to decompose a space into invariant subspaces, to find invariants of linear transformation, to explore the properties of nilpotent transformation relating nilpotence with invariants.

CLO 4: Define Jordan, canonical form, Jordan blocks, define rational canonical form, define companion matrix of polynomial, find the elementary devices of transformation, apply the concepts to find characteristic polynomial of linear transformation.

CLO 5: Define trace, define transpose of a matrix, explain the properties of trace and transpose, to find trace, to find transpose of matrix, to prove Jacobson lemma using the triangular form, define symmetric matrix, skew symmetric matrix, adjoint, to define Hermitian, unitary, normal transformations and to verify whether the transformation in Hermitian, unitary and normal

			PSOs						
	1	2	1	2	3				
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

Objectives of	the	To work comfortably with functions of bounded variation, Riemann-Stieltjes
Course		Integration, convergence of infinite series, infinite product and uniform
		convergence and its interplay between various limiting operations.
Course Outline		UNIT-I : Functions of bounded variation - Introduction - Properties of
		monotonic functions - Functions of bounded variation - Total variation -
		Additive property of total variation - Total variation on [a, x] as a function of
		x - Functions of bounded variation expressed as the difference of two
		increasing functions - Continuous functions of bounded variation.
		Chapter – 6 : Sections 6.1 to 6.8
		Infinite Series : Absolute and conditional convergence - Dirichlet's test and
		Abel's test - Rearrangement of series - Riemann's theorem on conditionally
		convergent series.
		Chapter 8 : Sections 8.8, 8.15, 8.17, 8.18
		UNIT-II : The Riemann - Stieltjes Integral - Introduction - Notation - The
		definition of the Riemann - Stieltjes integral - Linear Properties - Integration
		by parts- Change of variable in a Riemann - Stieltjes integral - Reduction to a
		Riemann Integral - Euler's summation formula - Monotonically increasing
		integrators, Upper and lower integrals - Additive and linearity properties of
		upper, lower integrals - Riemann's condition - Comparison theorems.
		Chapter - 7 : Sections 7.1 to 7.14
		UNIT-III : The Riemann-Stieltjes Integral - Integrators of bounded
		variation-Sufficient conditions for the existence of Riemann-Stieltjes
		integrals-Necessary conditions for the existence of RS integrals- Mean value
		theorems -integrals as a function of the interval - Second fundamental
		theorem of integral calculus-Change of variable -Second Mean Value
		Theorem for Riemann integral- Riemann-Stieltjes integrals depending on a
		parameter- Differentiation under integral sign-Lebesgue criterion for
		existence of Riemann integrals. Chapter - 7: 7.15 to 7.26
		UNIT-IV : Infinite Series and infinite Products - Double sequences -
		Double series - Rearrangement theorem for double series - A sufficient
		condition for equality of iterated series - Multiplication of series – Cesaro
		summability.
		Chapter - 8 Sec, 8.20, 8.21 to 8.25
		Power series - Multiplication of power series - The Taylor's series generated
		by a function - Bernstein's theorem - Abel's limit theorem.
		Chapter 9 : Sections 9.14 9.15, 9.19, 9.20, 9.22

	UNIT-V: Sequences of Functions – Pointwise convergence of sequences of
	functions - Examples of sequences of real - valued functions - Uniform
	convergence and continuity - Cauchy condition for uniform convergence -
	Uniform convergence of infinite series of functions - Riemann - Stieltjes
	integration - Non-uniform Convergence and Term-by-term Integration -
	Uniform convergence and differentiation - Sufficient condition for uniform
	convergence of a series - Mean convergence.
	Chapter -9 Sec 9.1 to 9.6, 9.8,9.9,9.10,9.11, 9.13
Extended Professional	Questions related to the above topics, from various competitive examinations
Component (is a part	UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC / others to be solved
of internal component	(To be discussed during the Tutorial hour)
only, Not to be	
included in the	
External Examination	
question paper)	
Skills acquired from	Knowledge, Problem Solving, Analytical ability, Professional Competency,
this course	Professional Communication and Transferrable Skill
Recommended Text	Tom M.Apostol : Mathematical Analysis, 2 nd Edition, Addison-Wesley
	Publishing Company Inc. New York, 1974.
Reference Books	1. Bartle, R.G. Real Analysis, John Wiley and Sons Inc., 1976.
	2. Rudin, W. Principles of Mathematical Analysis, 3rd Edition. McGraw Hill
	Company, New York, 1976.
	3. Malik,S.C. and Savita Arora. Mathematical Anslysis, Wiley Eastern
	Limited.New Delhi, 1991.
	4. Sanjay Arora and Bansi Lal, Introduction to Real Analysis, Satya
	Prakashan, New Delhi, 1991.
	5. Gelbaum, B.R. and J. Olmsted, <i>Counter Examples in Analysis</i> , Holden day,
	San Francisco, 1964.
	6. A.L.Gupta and N.R.Gupta, <i>Principles of Real Analysis</i> , Pearson Education,
	(Indian print) 2003.
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,
e-Learning Source	http://www.opensource.org, www.mathpages.com

Students will be able to

CLO1: Analyze and evaluate functions of bounded variation and Rectifiable Curves.

CLO2: Describe the concept of Riemann-Stieltjes integral and its properties.

CLO3: Demonstrate the concept of step function, upper function, Lebesgue function and their integrals.

CLO4: Construct various mathematical proofs using the properties of Lebesgue integrals and establish the Levi monotone convergence theorem.

CLO5: Formulate the concept and properties of inner products, norms and measurable functions.

			PSOs						
	1	2	1	2	3				
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

Objectives of the	To develop strong background on finding solutions to linear differential							
Course	equations with constant and variable coefficients and also with singular							
	points, to study existence and uniqueness of the solutions of first order							
	differential equations							
Course Outline	UNIT-I : Linear equations with constant coefficients							
	Second order homogeneous equations-Initial value problems-Linear							
	dependence and independence-Wronskian and a formula for Wronskian-Non-							
	homogeneous equation of order two.							
	Chapter 2: Sections 1 to 6							
	UNIT-II : Linear equations with constant coefficients(Continued)							
	Homogeneous and non-homogeneous equation of order n –Initial value							
	problems- Annihilator method to solve non-homogeneous equation- Algebra							
	of constant coefficient operators.							
	Chapter 2 : Sections 7 to 12.							
	UNIT-III : Linear equation with variable coefficients							
	Initial value problems -Existence and uniqueness theorems - Solutions to							
	solve a non-homogeneous equation – Wronskian and linear dependence –							
	reduction of the order of a homogeneous equation - homogeneous equation							
	with analytic coefficients-The Legendre equation.							
	Chapter : 3 Sections 1 to 8 (Omit section 9)							
	UNIT-IV :Linear equation with regular singular points							
	Euler equation - Second order equations with regular singular points -							
	Exceptional cases – Bessel Function.							
	Chapter 4 : Sections 1 to 4 and 6 to 8 (Omit sections 5 and 9)							
	UNIT-V : Existence and uniqueness of solutions to first order equations:							
	Equation with variable separated - Exact equation - method of successive							
	approximations - the Lipschitz condition - convergence of the successive							
	approximations and the existence theorem.							
	Chapter 5 : Sections 1 to 6 (Omit Sections 7 to 9)							
Extended Professional	Questions related to the above topics, from various competitive examinations							
Component (is a part	UPSC / TRB / NET / UGC - CSIR / GATE / TNPSC / others to be solved							
of internal component	(To be discussed during the Tutorial hour)							
only, Not to be								
included in the								
External Examination								
question paper)								
Skills acquired from	Knowledge, Problem Solving, Analytical ability, Professional Competency,							
this course	Professional Communication and Transferrable Skill							

Decommonded Text	EA Coddington A introduction to ordingmy differential equations (2rd										
Recommended Text	D.A. Counington, A introduction to orainary apprential equations (5 Drinting) Drantica Hall of India Ltd. Naw Dalhi 1087										
	Printing) Prentice-Hall of India Ltd., New Delhi, 1987.										
Reference Books	1. Williams E. Boyce and Richard C. DI Prima, <i>Elementary differential</i>										
	equations and boundary value problems, John Wiley and sons, New York,										
	1967.										
	2. George F Simmons, Differential equations with applications and										
	historical notes, Tata McGraw Hill, New Delhi, 1974.										
	3. N.N. Lebedev, Special functions and their applications, Prentice Hall of										
	India, New Delhi, 1965.										
	4. W.T. Reid. Ordinary Differential Equations, John Wiley and Sons, New										
	York, 1971										
	5. M.D.Raisinghania, Advanced Differential Equations, S.Chand &										
	Company Ltd. New Delhi 2001										
	6. B.Rai, D.P.Choudary and H.I. Freedman, A Course in Ordinary										
	Differential Equations, Narosa Publishing House, New Delhi, 2002.										
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,										
e-Learning Source	http://www.opensource.org, www.mathpages.com										

Students will be able to

CLO1: Establish the qualitative behavior of solutions of systems of differential equations .

CLO2: Recognize the physical phenomena modeled by differential equations and dynamical systems.

CLO3: Analyze solutions using appropriate methods and give examples.

CLO4: Formulate Green's function for boundary value problems.

CLO5: Understand and use various theoretical ideas and results that underlie the mathematics in this course.

			PSOs						
	1	2	1	2	3				
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

SEMESTER: I
PART: A
CORE COURSE – III
Elective -I

23PMATE14-1: GRAPH THEORY AND APPLICATIONS

Objectives of the Course	To understand and apply the fundamental concepts in graph theory.
Course Outline	UNIT-I : Basic Concepts: Graphs – Subgraphs – Degrees of vertices –
	Paths and connectedness – Automorphism of a simple graph, Line
	Graphs.Connectivity:Vertex cuts and Edge cuts – Connectivity and edge –
	connectivity.
	UNIT-II: Trees – Characterization and Simple properties-Independent sets
	and Matchings: Vertex Independent sets and Vertex Coverings - Edge-
	Independent Sets – Matchings and Factors, Matchings in Bipartite Graphs
	(except the proof of Tutte's 1-factor theorem).
	UNIT-III : Eulerian Graphs - Hamiltonian Graphs.
	UNIT-IV : Graph Colorings: Vertex Colorings – Critical Graphs –
	Brooks' Theorem.EdgeColorings of Graphs – Vizing's Theorem –
	Chromatic Polynomials.
	UNIT-V: Planar Graphs: Planar and Nonplanar Graphs – Euler's Formula
	and its Consequences – K_5 and $K_{3,3}$ are Nonplanar graphs – Dual of a Plane
	Graph – The Four Color Theorem and the Heawood Five-Color Theorem.
Extended Professional	Questions related to the above topics, from various competitive
Component (is a part of	examinations UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC / others
Not to be included in the	(To be discussed during the Tutorial hour)
External Examination	
question paper)	
Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional Competency,
course	Professional Communication and Transferrable Skill
Recommended Text	1.R. Balakrishnan and K. Ranganathan, A Textbook of Graph
	Theory(Universitext), Second Edition, Springer, New York, 2012.
Reference Books	1. Douglas B. West, Introduction to Graph Theory, Second Edition,
	PHI Learning Private Ltd, New Delhi, 2011.
	2. J.A. Bondy and U.S.R. Murty, Graph Theory, Springer, 2008.
	3. M.Murugan, Graph Theory and Algorithms, Second Edition,
	Muthan Publishing House, Annanagar, Chennai, 2018.
website and	
e-Learning Source	

Students will be able to

- CLO 1: Understand the basics of graph theory and their various properties.
- **CLO 2:** Develop Models using graphs and to solve the problems algorithmically.
- **CLO 3:** Apply graph theory concepts to solve real world applications like routing, TSP/traffic control, etc.
- CLO 4: Analyse the significance of graph theory in different engineering disciplines.
- **CLO 5:** Understand the applications of duality and planarity of graphs.

		POs					PSOs		
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

SEMESTER: I					
PART: A					
CORE COURSE – III					
Elective -I					

23PMATE14-2: PROGRAMMING in C++

	-
Objectives of the Course	The main objective of this course are
	1. To learn the basic knowledge of C language as pre-requisites
	2. To enable the students to write the C++ programs using
	classes, functions and interfaces
	3. To develop programming skills in C++ with its object-oriented
	concepts To make applications using C++ programs.
Course Outline	UNIT-I : Tokens, Expressions and Control Structure
	Basic Concept of Object- Oriented Programming- Benefits of OOP-
	Applications of OOP – Tokens, Expressions and Control Structure:
	Introduction – Tokens– Keywords – Identifiers and Constants – Basic Data
	Types – User Defined Data Types – Storage Classes – Derived Data Types
	- Symbolic Constants - Type Compatibility - Declaration of Variables -
	Dynamic Initialization of Variables – Reference variables – Operators in
	C++ – Scope Resolution Operators – Operator Over Loading – Control
	Structures.
	Chapter I (Sections: 1.5,1.6 and 1.8)
	Chapter III (Sections: 3.1 to 3.15, 3.23 and 3.25)
	UNIT-II: Functions C++
	Introduction– The Main Function – Function Prototyping – Call by
	Reference – Return by Reference – Inline Functions – Default Arguments –
	Const Arguments – Recursion – Function over Loading – Friend and Virtual
	Functions – Math Library Functions.
	Chapter IV (Sections: 4.1 to 4.12)
	UNIT-III : Classes and Objects & Constructors and Destructors
	Classes and Objects: Introduction – C Structures Revised – Specifying a
	Class – Defining Member Functions – C++ program with class– Making an
	Outside Function Inline – Nesting of Member Functions – Private Member
	Functions – Arrays Within a Class – Arrays of Objects – Objects as
	Function Arguments – Friendly Functions.
	Constructors and Destructors: Introduction – Constructors –
	Parameterized Constructors – Multiple Constructors in a Class –
	Constructors with Default Arguments – Dynamic Initializations of Objects
	– Copy Constructors – Destructors.
	Chapter V (Sections: 5.1 to 5.9 and 5.13 to 5.15)
	Chapter VI (Sections: 6.1 to 6.7 and 6.11)

	UNIT-IV : Operator Overloading, Inheritance and Extending Class						
	Operator Overloading: Introduction – Defining operators Overloading –						
	Overloading Unary Operators – Overloading Binary Operators –						
	Overloading Binary Operators Using Friends – Manipulating of Strings						
	Using Operators – Rules for Overloading Operators.						
	Inheritance and Extending Classes: Introduction – Defining Derived						
	Classes – Single Inheritance – Making a Private Member Inheritable –						
	Multilevel Inheritance – Multiple Inheritance – Hierarchical Inheritance –						
	Hybrid Inheritance.						
	Chapter VII (Sections: 7.1 to 7.6 and 7.8)						
	Chapter VIII (Sections: 8.1 to8.8)						
	UNIT-V: Streams and Working with files Streams: Introduction –						
	C++ Streams – C++ Stream Classes.						
	Working with files: Classes for File Stream Operations – Opening and						
	Closing a File – Detecting End-of-File – File Modes – File Pointers and						
	their Manipulations – Sequential Input and Output Operations – Random						
	Access.						
	Chapter X (Sections:10.1 to 10.3)						
	Chapter XI (Sections: 11.1 to 11.8)						
Extended Professional	Questions related to the above topics, from various competitive						
Component (is a part of	examinations UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC / others						
internal component only,	to be solved						
Not to be included in the	(To be discussed during the Tutorial hour)						
External Examination							
question paper)							
Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional						
course	Competency, Professional Communication and Transferrable Skill						
Recommended Text	E. Balaguruswamy, Object – Oriented Programming with C++, 6 th Edition,						
	Tata McGraw – Hill Publishing Company Limited, New Delhi, 2013.						
Reference Books	1. Programming with C++ BY D. Ravichandran, Tata McGraw –						
	Hill Publishing Company Limited New Delhi, 2006.						
	2. Object – Oriented Programming with C++ by S.S Vinod C_{1}						
	Chandra, New age.						
	- Hill Publishing Company Limited New Delhi 2003						
	- This I dolishing Company Elinited, New Denii, 2003.						
Website and							
e-Learning Source							

		POs					PSOs		
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

SEMESTER: I
PART: A
CORE COURSE
– III
Elective -I

23PMATE14-3: FORMAL LANGUAGES AND AUTOMATA THEORY

Credit:3 Hours:5

Objectives of the Course	1. Identify the role of switch as simple nontrivial finite automata
	2. Describe states, deterministic and non – deterministic nature of transition
	3. Differentiate various languages and the corresponding Machines which
	accepts them
	4. Ascertain the limitations of automata
Course Outline	UNIT-I : Introduction to the theory of Computation: Three basic
	concepts.
	Finite automata: Deterministic Finite Accepters – Nondeterministic Finite
	Accepters –Equivalence of deterministic and non-deterministic finite
	accepters – reduction of the number of states in finite automata.
	Chapter1 (1.2) , Chapter2(2.1–2.4)
	UNIT-II : Regular Languages and Regular Grammars:
	Regular Expressions-Connection between Regular Expressions and Regular
	Languages – Regular Grammars.
	Chapter3 (3.1–3.3)
	UNIT-III : Properties of Regular Languages:
	Closure properties of Regular Languages-Elementary questions about
	regular languages-identifying non-regular languages.
	Chapter4 (4.1–4.3)
	UNIT-IV : Context Free Languages:
	Context Free Grammars(CFG).
	Simplification of CFG and Normal Forms: Methods for transforming
	Grammars-Two important Normal Forms.
	Chapter 5 (5.1), Chapter6 (6.1, 6.2)
	UNIT-V: Pushdown Automata: Nondeterministic pushdown automata–Pushdown Automata and CFL – Deterministic Pushdown Automata and Deterministic CFL.
	Properties of CFL: Two Pumping Lemmas.
	Chapter 7 (7.1–7.3), Chapter8(8.1)

Extended Professional	Questions related to the above topics, from various competitive
Component (is a part of	examinations UPSC / TRB / NET / UGC - CSIR / GATE / TNPSC / others
internal component only,	to be solved
Not to be included in the	(To be discussed during the Tutorial hour)
External Examination	
question paper)	
Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional Competency,
course	Professional Communication and Transferrable Skill
Recommended Text	Contents and treatment as in An introduction to Formal Languages and
	Automata by Peter Linz, 4 th edition(2006), Narosa Publishing house.
Reference Books	1. Introduction to Automata Theory, Languages, and Computation by John
	E.Hopcroft,Rajeev
	Motwani and Jeffrey D.Ullman, 3 rd edition,Prentice Hall.
	2.A Course in Formal Languages, Automata and Groups by Ian
	M.Chiswell,1 st Edition,(2009),Springer
	3.Introduction to Languages and the Theory of Computation by John C
	Martin, 4 thedition(2010), McGraw-Hill.
	4. Introduction to Formal Languages, Automata Theory and Computation
	by Kamala Krithivasan and Rama R, (2009), Pearson.
	5. Formal Languages and Automata by Rani Siromoney(1979), The
	Christian Literature
	Society.
Website and	
e-Learning Source	

Course Objectives

Students will be able to

- CLO 1: Identify the role of switch as simple nontrivial finite automata
- CLO 2: Describe states, deterministic and non deterministic nature of transition
- CLO 3: Differentiate various languages and the corresponding Machines which accepts them

CLO 4: Ascertain the limitations of automata.

Course Learning Outcome (for Mapping with POs and PSOs)

		POs					PSOs		
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

23PMATE15-1: DISCRETE MATHEMATICS

Pre-requisite	-							
Objectives of the Course	1. To explore the knowledge in Lattices and their applications.							
	2. To develop applications of switching circuits.							
	3. To understand mathematical reasoning in order to read,							
	comprehend and construct mathematical arguments.							
	4. To develop mathematical foundations to understand and create							
	mathematical arguments in crpto systems.							
	5. To motivate students how to solve practical problems using							
	Discrete Mathematics.							
Course Outline	UNIT-I : Lattices							
	Properties and examples of Lattices – Distributive lattices – Boolean							
	algebras – Boolean polynomials – Minimal Forms of Boolean Polynomials.							
	UNIT-II: Applications of Lattices							
	Switching Circuits - Applications of Switching Circuits – More							
	Applications of Boolean Algebras.							
	UNIT-III : Coding Theory							
	Introduction to Coding – Linear Codes – Cyclic Codes – Special Cyclic							
	Codes.							
	UNIT-IV : Cryptology							
	Classical Cryptosystems – Public key Cryptosystems – Discrete Logarithms							
	and other Ciphers.							
	UNIT-V: Applications of Algebra							
	Semigroups – Semigroups and Automata – Semigroups and Formal							
	Languages –Semigroups and Biology.							
Extended Professional	Questions related to the above topics, from various competitive							
Component (is a part of	examinations UPSC / TRB / NET / UGC - CSIR / GATE / TNPSC / others							
internal component only,	to be solved							
Not to be included in the	(To be discussed during the Tutorial hour)							
External Examination								
question paper)								
Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional Competency,							
course	Professional Communication and Transferrable Skill							

Recommended Text	1. Rudolf Lidl& Gunter Pilz. APPLIED ABSTRACT ALGEBRA, Springer Verlag, 1
	Second Indian Reprint 2006.
Reference Books	1. J.P. Tremblay & R. Manohar, A First Course in Discrete Structures
	with Applications to Computer Science, McGraw Hill, 1987.
	2. Kenneth H. Rosen, Discrete Mathematics and it's Applications, 7th
	Edition/ McGraw Hill Education, New York, 2012.
	3. Liu C.L, Elements of Discrete Mathematics, McGraw Hill, New
	York, 1978.
Website and	
e-Learning Source	

CLO 1: Understand how Lattices can be used as a tool and mathematical model in the study of networks and circuits.

CLO 2: Construct mathematical arguments using logical connectives and quantifiers.

CLO 3: Apply codes to develop Mathematical Models.

CLO 4: Explore Applications of crypto systems in modern technology.

CLO 5: Learn how to work with some of the discrete structures which include semigroups and its applications.

			Р	Os				PSOs	
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

SEMESTER: I PART: A 23PMATE15-2: FUZZY SETS AND APPLICATIONS CREDIT CORE COURSE – III HOURS HOURS

Objectives of the Course	Familiarize the students with the fundamentals of fuzzy sets, operations on
	these sets and concept of membership function. Familiar with fuzzy
	relations and the properties of these relations .To know the concept of a
	fuzzy number and how it is defined. Become aware of the use of fuzzy
	inference systems in the design of intelligent systems
Course Outline	UNIT-I : Fuzzy Sets
	Fuzzy sets – Basic types – basic concepts – Characteristics – Significance
	of the paradigm shift – Additional properties of α -cuts.
	Chapter 1: 1.3 - 1.5 and Chapter 2: 2.1
	UNIT-II: Fuzzy sets versus CRISP sets
	Representation of fuzzy sets – Extension principle of fuzzy sets – Operation
	on fuzzy sets – Types of operation – Fuzzy Complements.
	Chapter 2: 2.2 - 2.3 and Chapter 3: 3.1 - 3.2
	UNIT-III : Operations on Fuzzy sets
	Fuzzy intersection – t-norms, fuzzy unions – t-conorms – Combinations of
	operations – Aggregation operations.
	Chapter 3: 3.3 - 3.6
	UNIT-IV : Fuzzy Arithmetic
	Fuzzy numbers – Linguistic variables – Arithmetic operation on intervals –
	Lattice of fuzzy numbers.
	Chapter 4: 4.1 - 4.4
	UNIT-V: Constructing Fuzzy Sets
	Methods of construction on overview – direct methods with one expert –
	direct method with multiple experts – indirect method with multiple experts
	and one expert – Construction from sample data. Chapter $10,10,1,10,7$
Extended Professional	Questions related to the above tonics from various competitive
Extended Frotessional	Questions related to the above topics, from various competitive
Component (is a part of	examinations UPSC / IRB / NET / UGC – CSIR / GATE / INPSC / others
internal component only,	to be solved
Not to be included in the	(To be discussed during the Tutorial hour)
External Examination	
question paper)	
Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional Competency,
course	Professional Communication and Transferrable Skill
Recommended Text	G.J Klir and Bo Yuan, Fuzzy sets and Fuzzy Logic: Theory and
	Applications, Prentice Hall of India Ltd, New Delhi, 2005.

Reference Books	H.J Zimmemann, Fuzzy Set Theory and its Applications, Allied Publishers, Chennai, 1996.
	2. A.Kaufman, Introduction to the Theory of fuzzy subsets, Academic press, New York, 1975.
	3. V.Novak, Fuzzy Sets and Their Applications, Adam Hilger, Bristol, 1969.
Website and	
e-Learning Source	

Course Outcome:	At the completion of the Course, the Students will able to
CLO1	Understand the concepts of Fuzzy sets and its types - Characteristics -
	Significance of the paradigm shift.
CLO2	Be able to distinguish between the crisp set and fuzzy set concepts through the
	learned differences between the crisp set characteristic function and the fuzzy set
	membership function.
CLO3	To know Fuzzy intersection – t-norms, fuzzy unions – t-conorms. Combinations
	of operations – Aggregation operations.
CLO4	Apply the concept of a fuzzy number and apply in real world problems
CLO5	Student practice to construct various methods of fuzzy sets using sample data.

			P	Os				PSOs	
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

CORE COURSE: III HOURS:: Elective: II HOURS::	SEMESTER: I PART: A CORE COURSE: III Elective: II	23PMATE15-3: OPTIMIZATION TECHNIQUES	CREDIT:3 HOURS:5
---	--	--------------------------------------	---------------------

Objectives of the Course	1. To enlighten the students in the field of operations research.
	2. To help the students to apply OR techniques in business and management
	problems.
	3. To provide a mathematical programming for finding applications in
	diverse fields Including engineering, computer science and economics.
Course Outline	UNIT-I: Integer programming algorithms –Branch and bound algorithm-
	cutting plane algorithm-computational considerations in ILP – travelling
	salesman problem – heuristic algorithms – B & B solution algorithm –
	cutting plane algorithm.
	Chapter 9, Sections 9.2.1 to 9.2.3, 9.3.1 to 9.3.3
	UNIT-II: Dynamic programming – Recursive nature of computations in
	DP – forward and backward recursion – knapsack/fly away/cargo – loading
	model – work force size model – equipment replacement model –
	investment model – inventory model.
	Chapter 10, Sections 10.1 to 10.3, 10.3.1 to 10.3.5
	UNIT-III : Decision analysis and Games - Decision making under
	certainty - analytic hierarchy process - decision making under risk -
	decision tree – based expected value criterion – variations of the expected
	value criterion – decision under uncertainty – game theory – optimal
	solution of two person zero sum games – solutions of mixed strategy games.
	Chapter 13, Sections 13.1, 13.2, 13.2.1, 13.2.2, 13.3, 13.4, 13.4.1,
	13.4.2.
	UNIT-IV : Classical optimization theory - unconstrained problems -
	necessary and sufficient conditions - the Newton Raphson method -
	constrained problems - equality constraints - inequality constraints -
	Karush Kuhn Tucker conditions
	Chapter 18, Sections 18.1, 18.1.1, 18.1.2, 18.2, 18.2.1, 18.2.2.
	UNIT-V: Non-Linear Programming algorithms – unconstrained algorithms
	- direct search method - gradient method - constrained algorithms -
	seperable programming – quadratic programming.
	Chapter 19, Sections 19.1, 19.1.1, 19.1.2, 19.2, 19.2.1, 19.2.2
Extended Professional	Questions related to the above topics, from various competitive
Component (is a part of	examinations UPSC / TRB / NET / UGC - CSIR / GATE / TNPSC / others
internal component only,	to be solved
Not to be included in the	(To be discussed during the Tutorial hour)
External Examination	
question paper)	
Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional Competency,
course	Professional Communication and Transferrable Skill

Recommended Text	Hamdy A. Taha, Operations Research (8 th Edn.), McGraw Hill Publications,
	New Delhi, 2006.
Reference Books	[1]O.L. Mangasarian, Non Linear Programming, McGraw Hill, New York.
	[2]Mokther S. Bazaraa and C.M. Shetty, Non Linear Programming,
	Theoryand Algorithms,
	Willy, New York.
	[3] Prem Kumar Gupta and D.S. Hira, Operations Research : An
	Introduction ,S. Chand and
	Co., Ltd. New Delhi.
	[4]S.S. Rao, Optimization Theory and Applications, Wiley Eastern Limited,
	New Delhi.
Website and	
e-Learning Source	

On successful completion of the course, the student will be able to,

- **CO1:** Ability to apply the theory of optimization methods and algorithms to develop and For solving various types of optimization problems.
- **CO2:** Ability to go in research by applying optimization techniques in real value problems
- **CO3:** Analyze decision making under certainty and uncertainty by game theory.

			Р	Os				PSOs	
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

SEMESTER: II
PART: A
CORE COURSE – IV

23PMATC21: ADVANCED ALGEBRA

Objectives of the	To study field extension roots of polynomials Galois Theory finite fields							
Course	division rings, solvability by redicals and to develop computational skill in							
Course	division rings, solvaonity by radicals and to develop computational skill in							
	abstract algebra.							
Course Outline	UNIT-T: Extension fields – I ranscendence of e.							
	Chapter 5: Section 5.1 and 5.2							
	UNIT-II: KOOTS OF POlynomials More about roots Chanton 5: Sections 5.2 and 5.5							
	Chapter 5: Sections 5.3 and 5.5							
	UNIT-III : Elements of Galois theory.							
	Chapter 5 : Section 5.6							
	UNIT-IV: Finite fields - Wedderburn's theorem on finite division rings.							
	Chapter 7: Sections 7.1 and 7.2 (Theorem 7.2.1 only)							
	UNIT-V : A theorem of Frobenius - Integral Quaternions and the Four -							
	Square theorem.							
	Chapter 7 : Sections 7.3 and 7.4							
Extended Professional	Questions related to the above topics, from various competitive examinations							
Component (is a part	UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC / others to be solved							
of internal component	(To be discussed during the Tutorial hour)							
only, Not to be								
included in the								
External Examination								
question paper)								
Skills acquired from	Knowledge, Problem Solving, Analytical ability, Professional Competency,							
this course	Professional Communication and Transferrable Skill							
Recommended Text	I.N. Herstein. Topics in Algebra (II Edition) Wiley EasternLimited, New							
	Delhi, 1975.							
Reference Books	1. M.Artin, <i>Algebra</i> , Prentice Hall of India, 1991.							
	2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, Basic Abstract Algebra (II							
	Edition) Cambridge University Press, 1997. (Indian Edition)							
	3. I.S.Luther and I.B.S.Passi, Algebra, Vol. I –Groups(1996); Vol. II							
	Rings, Narosa Publishing House, New Delhi, 1999							
	4. D.S.Malik, J.N. Mordeson and M.K.Sen, Fundamental of Abstract							
	Algebra, McGraw Hill (International Edition), New York. 1997.							
	5. N.Jacobson, Basic Algebra, Vol. I & II Hindustan Publishing Company,							
	New Delhi.							
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics.							
e-Learning Source	http://www.opensource.org, www.algebra.com							

Students will be able to

CLO1: Prove theorems applying algebraic ways of thinking.

CLO2: Connect groups with graphs and understanding about Hamiltonian graphs.

CLO3: Compose clear and accurate proofs using the concepts of Galois Theory.

CLO4: Bring out insight into Abstract Algebra with focus on axiomatic theories.

CLO5: Demonstrate knowledge and understanding of fundamental concepts including extension fields, Algebraic extensions, Finite fields, Class equations and Sylow's theorem.

		POs						PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	3	1	3	2	3	3	3	2	1	
CLO2	2	1	3	1	3	3	3	2	1	
CLO3	3	2	3	1	3	3	3	2	1	
CLO4	1	2	3	2	3	3	3	2	1	
CLO5	3	1	2	3	3	3	3	2	1	

SEMESTER: II					
PART: A					
CORE COURSE – V					

23PMATC22: REAL ANALYSIS II

Objectives of the	To introduce measure on the real line, Lebesgue measurability and						
Course	integrability, Fourier Series and Integrals, in-depth study in multivariable						
	calculus.						
Course Outline	UNIT-I :Measure on the Real line - Lebesgue Outer Measure - Measurable						
	sets - Regularity - Measurable Functions - Borel and Lebesgue Measurability						
	Chapter - 2 Sec 2.1 to 2.5 (de Barra)						
	UNIT-II : Integration of Functions of a Real variable - Integration of Non-						
	negative functions - The General Integral - Riemann and Lebesgue Integrals						
	Chapter - 3 Sec 3.1,3.2 and 3.4 (de Barra)						
	UNIT-III : Fourier Series and Fourier Integrals - Introduction - Orthogonal						
	system of functions - The theorem on best approximation - The Fourier series						
	of a function relative to an orthonormal system - Properties of Fourier						
	Coefficients - The Riesz-Fischer Thorem - The convergence and representation						
	problems in for trigonometric series - The Riemann - Lebesgue Lemma -						
	Dirichlet Integrals - An integral representation for the partial sums of Fourier						
	series - Riemann's localization theorem - Sufficient conditions for convergence						
	of a Fourier series at a particular point – Consequences of Feies's theorem -						
	The Weierstrass approximation theorem						
	Chapter 11 : Sections 11.1 to 11.12.11.14 & 11.15 (Apostol)						
	UNIT-IV : Multivariable Differential Calculus - Introduction - The						
	Directional derivative - Directional derivative and continuity - The total						
	derivative - The total derivative expressed in terms of partial derivatives - T						
	matrix of linear function - The Jacobian matrix - The chain rule - Matrix form						
	of chain rule - The mean - value theorem for differentiable functions - A						
	sufficient condition for differentiability - A sufficient condition for equality of						
	mixed partial derivatives - Taylor's theorem for functions of \mathbb{R}^n to \mathbb{R}^1						
	Chapter 12 : Section 12.1 to 12.14 (Apostol)						
	UNIT-V : Implicit Functions and Extremum Problems : Functions with						
	non-zero Jacobian determinants – The inverse function theorem-The Implicit						
	function theorem-Extrema of real valued functions of severable variables-						
	Extremum problems with side conditions.						
	Chapter 13 : Sections 13.1 to 13.7 (Apostol)						
Extended Professional	Questions related to the above topics, from various competitive examinations						
Component (is a part	UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC / others to be solved						
of internal component	(To be discussed during the Tutorial hour)						
only, Not to be							
included in the							
External Examination							
question paper)							

Skills acquired from	Knowledge, Problem Solving, Analytical ability, Professional Competency,									
this course	Professional Communication and Transferrable Skill									
Recommended Text	G. de Barra, Measure Theory and Integration, Wiley Eastern Ltd., New									
	Delhi, 1981. (for Units I and II)									
	2 Tom M Apostol · Mathematical Analysis 2 nd Edition Addison-Wesley									
	2. Tom M.Apostor : Mainematical Analysis, 2 Edition, Addison-Wesley Dubliching Company Inc. New York 1074 (for Units III, IV and V)									
	Fuonshing Company Inc. New Tork, 1974. (for Onits III, 1V and V)									
Reference Books	1. Burkill, J.C. <i>The Lebesgue Integral</i> , Cambridge University Press, 1951.									
	. Munroe, M.E. Measure and Integration. Addison-Wesley, Mass. 1971.									
	. Roydon,H.L. <i>Real Analysis</i> , Macmillan Pub. Company, New York, 1988.									
	Rudin, W. <i>Principles of Mathematical Analysis</i> , McGraw Hill Company									
	New York,1979.									
	5. Malik, S.C. and Savita Arora. <i>Mathematical Analysis</i> , Wiley Eastern									
	Limited. New Delhi, 1991.									
	6. Sanjay Arora and Bansi Lal, Introduction to Real Analysis, Satya									
	Prakashan, New Delhi, 1991									
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,									
e-Learning Source	http://www.opensource.org									

Students will be able to

CLO1: Understand and describe the basic concepts of Fourier series and Fourier integrals with respect to orthogonal system.

CLO2: Analyze the representation and convergence problems of Fourier series.

CLO3: Analyze and evaluate the difference between transforms of various functions.

CLO4: Formulate and evaluate complex contour integrals directly and by the fundamental theorem.

CLO5: Apply the Cauchy integral theorem in its various versions to compute contour integration.

	POs							PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	3	1	3	2	3	3	3	2	1	
CLO2	2	1	3	1	3	3	3	2	1	
CLO3	3	2	3	1	3	3	3	2	1	
CLO4	1	2	3	2	3	3	3	2	1	
CLO5	3	1	2	3	3	3	3	2	1	

SEMESTER: II PART: A CORE COURSE – VI

23PMATC23: PARTIAL DIFFERENTIAL EQUATIONS

	To close if the second order partial differential equations and to study Courses							
Objectives of the	To classify the second order partial differential equations and to study Cauchy							
Course	problem, method of separation of variables, boundary value problems.							
Course Outline	UNIT-1 :Iviatnematical iviodels and Classification of second order							
	equation : Classical equations-Vibrating string – Vibrating membrane – waves							
	in elastic medium – Conduction of heat in solids – Gravitational potential –							
	Second order equations in two independent variables – canonical forms –							
	equations with constant coefficients – general solution							
	Chapter 2 : Sections 2.1 to 2.6							
	Chapter 3 : Sections 3.1 to 3.4 (Omit 3.5)							
	UNIT-II :Cauchy Problem : The Cauchy problem – Cauchy-Kowalewsky							
	theorem - Homogeneous wave equation - Initial Boundary value problem-							
	Non-homogeneous boundary conditions – Finite string with fixed ends – Non-							
	homogeneous wave equation - Riemann method - Goursat problem -							
	spherical wave equation – cylindrical wave equation.							
	Chapter 4 : Sections 4.1 to 4.11							
	UNIT-III :Method of separation of variables: Separation of variable-							
	Vibrating string problem – Existence and uniqueness of solution of vibrating							
	string problem - Heat conduction problem - Existence and uniqueness of							
	solution of heat conduction problem – Laplace and beam equations							
	Chapter 6 : Sections 6.1 to 6.6 (Omit section 6.7)							
	UNIT-IV : Boundary Value Problems : Boundary value problems -							
	Maximum and minimum principles – Uniqueness and continuity theorem –							
	Dirichlet Problem for a circle, a circular annulus, a rectangle – Dirichlet							
	problem involving Poisson equation – Neumann problem for a circle and a							
	rectangle.							
	Chapter 8 : Sections 8.1 to 8.9							
	UNIT-V : Green's Function: The Delta function – Green's function –							
	Method of Green's function - Dirichlet Problem for the Laplace and							
	Helmholtz operators – Method of images and eigen functions – Higher							
	dimensional problem – Neumann Problem.							
	Chapter 10 : Section 10.1 to 10.9							
Extended Professional	Questions related to the above topics, from various competitive examinations							
Component (is a part	UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC / others to be solved							
of internal component	(To be discussed during the Tutorial hour)							
only, Not to be								
included in the								
External Examination								
question paper)								

Skills acquired from	Knowledge, Problem Solving, Analytical ability, Professional Competency,										
this course	Professional Communication and Transferrable Skill										
Recommended Text	TynMyint-U and Lokenath Debnath, Partial Differential Equations for										
	Scientists and Engineers (Third Edition), North Hollan, New York, 1987.										
Reference Books	. M.M.Smirnov, Second Order partial Differential Equations, Leningrad, 1964.										
	. I.N.Sneddon, <i>Elements of Partial Differential Equations</i> , McGraw Hill, New Delhi, 1983.										
	3. R. Dennemeyer, Introduction to Partial Differential Equations and Boundary Value Problems, McGraw Hill, New York, 1968.										
	4. M.D.Raisinghania, <i>Advanced Differential Equations</i> , S.Chand & Company Ltd., New Delhi, 2001.										
	 S, Sankar Rao, <i>Partial Differential Equations</i>, 2nd Edition, Prentice Hall of India, New Delhi. 2004 										
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,										
e-Learning Source	http://www.opensource.org, www.mathpages.com										

Students will be able to

•

CLO1: To understand and classify second order equations and find general solutions

CLO2: To analyse and solve wave equations in different polar coordinates

CLO3: To solve Vibrating string problem, Heat conduction problem, to identify and solve Laplace and beam equations

CLO4: To apply maximum and minimum principle's and solve Dirichlet, Neumann problems for various boundary conditions

CLO5: To apply Green's function and solve Dirichlet, Laplace problems, to apply Helmholtz operation and to solve Higher dimensional problem

	POs							PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	3	1	3	2	3	3	3	2	1	
CLO2	2	1	3	1	3	3	3	2	1	
CLO3	3	2	3	1	3	3	3	2	1	
CLO4	1	2	3	2	3	3	3	2	1	
CLO5	3	1	2	3	3	3	3	2	1	

Objectives of the Course	1. To study random variables and its applications.									
	2. To explore probability distributions.									
	3. To understand moments and their functions.									
	4. To introduce significance tests.									
	5. Concepts of ANOVA									
Course Outline	UNIT-I : Random Variables									
	The concepts of random variables – The distribution function – Random									
	variable of the discrete type and the continuous type - Functions of									
	andom variables – Marginal distributions – Conditional distributions									
	Independent random variables.									
	UNIT-II: Some Probability Distributions									
	The Binomial Distribution – The Poisson Distribution – The Unifo Distribution – The Normal Distribution – The Gamma Distribution – T									
	Distribution – The Normal Distribution – The Gamma Distribution – The Gamma Distribution									
	Seta Distribution.									
	JNIT-III : Sample Moments and Their Functions									
	Notion of a sample and a statistic - Distribution of the arithmetic mean c									
	ndependent normally distributed random variables – The χ^2 -distribution –									
	The distribution of the statistics (\overline{X}, S) – Student's t - distribution -									
	Fisher's Z – distribution.									
	NIT-IV : Significance tests									
	oncept of a statistical test – Parametric tests for small samples and large									
	samples - χ^2 test - Tests of Kolmogorov and Smirnov type – Independence									
	Tests by contingency tables.									
	UNIT-V: Analysis of Variance									
	One-way Classification and two-way Classification. Hypotheses Testing:									
	The Power functions and OC function – Most Powerful test – Uniformly									
	most powerful test – unbiased tests.									
Extended Professional	Questions related to the above topics, from various competitive									
Component (is a part of	examinations UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC /									
internal component only,	others to be solved									
Not to be included in the	(To be discussed during the Tutorial hour)									
External Examination										
question paper)										
Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional									
course	Competency, Professional Communication and Transferrable Skill									
Recommended Text	M. Fisz, Probability Theory and Mathematical Statistics, John Wiley and									
	sons, New Your, 1967.									

Reference Books	 E.J.Dudewicz and S.N.Mishra ,Modern Mathematical Statistics, John Wiley and York, 1988.
	2. V.K.RohatgiAn Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern New Delhi, 1988(3rd Edn).
	3. B.L.VanderWaerden, Mathematical Statistics, G.Allen& Unwin Ltd., London, 19
Website and	
e-Learning Source	

After completion of this course the student will be able to

CLO 1: Apply the concepts of random variables in real life situations.

CLO 2: Identify the type of statistical situation to which different distributions can be applied.

CLO 3: Calculate moments and their functions.

CLO 4: Explore knowledge in the various significance tests for statistical data.

CLO 5: Analyze statistical data using ANOVA.

	POs							PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	3	1	3	2	3	3	3	2	1	
CLO2	2	1	3	1	3	3	3	2	1	
CLO3	3	2	3	1	3	3	3	2	1	
CLO4	1	2	3	2	3	3	3	2	1	
CLO5	3	1	2	3	3	3	3	2	1	

Objectives of the Course	The main purpose of the course is to introduce students to understand the							
	subject of differential geometry, where you talk about manifolds, one							
	difficulty is that the geometry is described by coordinates, but the							
	coordinates do not have meaning. They are allowed to undergo							
	transformation. And in order to handle this kind of situation, an important							
	tool is the so-called tensor analysis, which was new to mathematicians.							
Course Outline	Unit I: Tensor Algebra							
	Systems of different orders – Summation convention – Kronecker							
	symbols – Transformation of coordinates in Sn. Invariants – Covariant							
	and Contravariant vectors - Tensors of second order -Mixed tensors -							
	Zero tensors - Tensor field - Algebra of tensors - Equality of tensors -							
	Symmetric and Skew -Symmetric tensors – Outer multiplication,							
	Contraction and Inner multiplication – Quotient Law of tensors –							
	Reciprocal tensor of tensor – Relative tensor – Cross product of vectors.							
	Chapter 1: 1.1 – 1.3,1.7 & 1.8, Chapter 2: 2.1 – 2.9(Text Book -1)							
	Unit II: Tensor Calculus							
	Riemannian space – Christoffel symbols and their properties.							
	Chapter 3: 3.1 – 3.2(Text Book -1)							
	Unit III: Tensor Calculus (Contd)							
	Covariant differentiation of tensors - Riemann-Christoffel curvature							
	tensor – Intrinsic differentiation.							
	Chapter 3: 3.3 – 3.5 (Text Book -1)							
	Unit IV: Special Theory of Relativity							
	Galilean transformation – Maxwell's equations – The Ether theory – The							
	principle of Relativity.							
	Relativistic Kinematics: Laurent's transformation equations – Events and							
	simultaneity –Example – Einstein train – Time dilation – Longitudinal							
	contraction - Invariant interval - Proper time and proper distance - World							
	line – Example – Twin paradox – Addition of velocities –Relativistic							
	Doppler effect.							
	Chapter 7: 7.1 – 7.2 (Text Book -2)							
	Unit V: Relativistic Dynamics							
	Momentum – Energy – Momentum-Energy four vector – Force –							
	Conservation of energy – Mass and energy – Example – Inelastic collision							
	– Principle of equivalence – Lagrangian and Hamiltonian formulations.							
	Accelerated Systems: Rocket with constant acceleration – Example –							
	Rocket with constant thrust.							
	Chapter 7: 7.3 – 7.4(Text Book -2)							

Extended Professional	Questions related to the above topics, from various competitive							
Component (is a part of	examinations UPSC / TRB / NET / UGC - CSIR / GATE / TNPSC /							
internal component only, Not	others to be solved							
to be included in the External	(To be discussed during the Tutorial hour)							
Examination question paper)								
Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional							
course	Competency, Professional Communication and Transferrable Skill							
Recommended Text	1.U.C. De, Absos Ali Shaikh & Joydeep Sengupta, Tensor Calculus,							
	Narosa Publishing House, New Delhi, 2004.							
	 D. Greenwood, Classical Dynamics, Prentice Hall of India, New Delhi, 1985. 							
Reference Books	1. J.L. Synge &A. Schild, Tensor Calculus, Toronto, 1949.							
	2. A.S. Eddington, The Mathematical Theory of Relativity, Cambridge							
	University Press, 1930.							
	3. P.G. Bergman, An Introduction to Theory of Relativity, New York,							
	1942.							
	4. C.E. Weatherburn, Riemannian geometry and The Tensor Calculus,							
	Cambridge, 1938.							
Website and								
e-Learning Source								

Students will be able to

- CLO1-Understand Tensor Algebra terminologies and different orders Summation convention– Kronecker symbols – Transformation of coordinates in Sn. Invariants – Covariant and Contravariant vectors and arithmetic's law related to tensor.
- CLO2 Discuss the Riemannian space Christoffel symbols and their properties.
- CLO3 -Tensor calculus fundamentals on covariant differentiation of tensors Riemann Christoffel curvature tensor – Intrinsic differentiation are carried out.
- CLO4 -Focus on special theory of relativity concepts of Laurent's transformation equations, Einstein train – Time dilation – Longitudinal contraction – Invariant interval – Twin paradox.
- CLO5- Study the application of theory relativistic dynamics on Momentum-Energy four vector- Force Conservation of energy Principle of equivalence Lagrangian and Hamiltonian formulations.

	POs							PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	3	1	3	2	3	3	3	2	1	
CLO2	2	1	3	1	3	3	3	2	1	
CLO3	3	2	3	1	3	3	3	2	1	
CLO4	1	2	3	2	3	3	3	2	1	
CLO5	3	1	2	3	3	3	3	2	1	
SEMESTER: II		Credit:3								
----------------	---------------------------------	----------								
PART: A	23PMATE24-3: ALGEBRAIC TOPOLOGY	Hours:4								
Elective - III										

Objectives of the Course	To introduce the ideas of algebraic topology to other branches of			
	Mathematics.			
Course Outline	UNIT – I : CALCULUS IN THE PLANE: PATH INTEGRALS			
	Angles and Deformations - Differential forms and path Integrals -			
	Independence of Path –Criterion for exactness. Angles and Deformations:			
	Angle functions and Winding numbers			
	- Reparametrizing and Deforming the Paths. Winding Numbers: Definition			
	- Homotopy and Reparametrization - Varying the point - Degrees and			
	Local Degrees.			
	Chapter -1 : (a) to (c); Chapter -2 : (a) to (b); Chapter -3 : (a) to (d)			
	UNIT – II: COHOMOLOGY AND HOMOLOGY			
	De Rham Cohomology and the Jordan Curve Theorem. Definition of the De			
	Rham Graphs – The Coboundary map – the Jordon Curve Theorem –			
	Applications and Variations.			
	Homology: Chains, Cycles, and H0U - Boundaries, H1U, and Winding			
	Numbers – Chains on Grids – Maps and Homology – The First Homology			
	Group for General Spaces.			
	Chapter 5: (a) to (d); Chapter 6: (a) to (e)			
	UNIT – III: HOLES AND INTEGRALS			
	Multiply connected regions – Integrations over continuous Paths and Chains			
	– Periods of Integrals – Complex Integration.			
	Mayer - Victoris: The Boundary map - Mayer - Victoris for Homology -			
	Variations and applications – Mayer – Victoris for Cohomology.			
	Chapter 9: (a) to (d); Chapter 10: (a) to (d)			
	UNIT – IV: COVERING SPACES AND FUNDAMENTAL GROUPS			
	Covering spaces: Definition – Lifting paths and Homotopies – G-coverings			
	– Covering Transformations.			
	The Fundamental Groups: Definitions and Basic Properties –Homotopy –			
	Fundamental group and Homology.			
	Fundamental Groups and Covering Spaces: Fundamental Group and			
	Coverings - Automorphisms of Coverings - The Universal Covering -			
	Coverings and Subgroups of the Fundamental Group.			
	Chapter 11: (a) to (d); Chapter 12: (a) to (c); Chapter 13: (a) to (d)			

	UNIT – V: THE VAN KAMPEN THEOREM
	G-Coverings from the Universal Covering – Patching Coverings together –
	The Van Kampen Theorem.
	Cohomology: Patching Coverings and Cech cohomology - Cech
	Cohomology and Homology - De Rham Cohomology and Homology -
	Proof of Mayer – Victoris fro De Rham Cohomology.
	Chapter 14: (a) to (d); Chapter 15: (a) to (d)
Extended Professional	Questions related to the above topics, from various competitive
Component (is a part of	examinations UPSC / TRB / NET / UGC - CSIR / GATE / TNPSC / others
internal component only,	to be solved
Not to be included in the	(To be discussed during the Tutorial hour)
External Examination	
question paper)	
Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional Competency,
course	Professional Communication and Transferrable Skill
Recommended Text	William Fulton, Algebraic Topology – A First Course, Springer – Verlag,
	New York, 1995.
Reference Books	1. M. K. Agoston, Algebraic Topology – A First Course. Marcel Dekker,
	1992.
	2. Satya Deo, Algebraic Topology, Hindustan Book Agency, New Delhi,
	2003.
	3. M. Greenberg and Harper, Algebraic Topology – A First Course,
	Benjamin /
	Cummings, 1981.
	4. C. F. Maunder, Algebraic topology, Van Nastrand, New York, 1970.
	5. J. R. Munkres, Topology, Prentica Hall of India, New Delhi, 2002, [3rd
	Indian Print]
Website and	
e-Learning Source	

Students will be able to

- **CLO1-** Understand the concepts of Calculus in the plane.
- CLO2- Understand the concepts cohomology and homology.
- CLO3 Understand holes integrals and Homology.
- **CLO4** -Analyse covering spaces and fundamental groups.
- **CLO5-** G-Coverings from the Universal Covering , Patching Coverings together , The Van Kampen Theorem ,Cohomology.

	POs							PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	3	1	3	2	3	3	3	2	1	
CLO2	2	1	3	1	3	3	3	2	1	
CLO3	3	2	3	1	3	3	3	2	1	
CLO4	1	2	3	2	3	3	3	2	1	
CLO5	3	1	2	3	3	3	3	2	1	

Objectives of the Course	To introduce the basic notions and techniques of Wavelets Theory and to
	establish the Concepts to understand and use wavelets from Fourier to
	wavelet analysis.
Course Outline	Unit I : An Overview
	Fourier analysis to wavelet analysis - Integral Wavelet Transform and
	Time-frequency analysis - Inversion formulas and duals - Classification
	of Wavelets – Multiresolution analysis - Splines and Wavelets – Wavelet
	decompositions and reconstructions.
	Chapter 1: Sections 1.1 to 1.6
	Unit II : Fourier Analysis
	Fourier and Inverse Fourier Transforms – Continuous-time convolution
	and the delta function - Fourier Transform of square-integrable
	functions- Fourier Series - Basic Convergence Theory - Poisson
	Summation Formula.
	Chapter 2: 2.1 and 2.5
	Unit III : Wavelet Transforms & Time Frequency Analysis
	The Gabor Transform – Short-time Fourier Transforms and the
	uncertainty principle - The integral Wavelet Transform - Dyadic
	Wavelets and Inversions - Frames - Wavelet Series.
	Chapter 3: Section 3.1 to 3.6
	Unit IV : Cardinal Spline Analysis
	Cardinal Spline spaces. – B-Splines and their basic properties - The two-
	Cardinal Spline spaces. – B-Splines and their basic properties - The two- scale relation and an interpolatory graphical display algorithm - B-Net
	Cardinal Spline spaces. – B-Splines and their basic properties - The two- scale relation and an interpolatory graphical display algorithm - B-Net representations and computation of cardinal splines - Construction of
	Cardinal Spline spaces. – B-Splines and their basic properties - The two- scale relation and an interpolatory graphical display algorithm - B-Net representations and computation of cardinal splines - Construction of cardinal splines - construction of spline application formulas -
	Cardinal Spline spaces. – B-Splines and their basic properties - The two- scale relation and an interpolatory graphical display algorithm - B-Net representations and computation of cardinal splines - Construction of cardinal splines - construction of spline application formulas - Construction of Spline interpolation formulas.
	Cardinal Spline spaces. – B-Splines and their basic properties - The two- scale relation and an interpolatory graphical display algorithm - B-Net representations and computation of cardinal splines - Construction of cardinal splines - construction of spline application formulas - Construction of Spline interpolation formulas. Chapter 4: Sections 4.1 to 4.6
	Cardinal Spline spaces. – B-Splines and their basic properties - The two- scale relation and an interpolatory graphical display algorithm - B-Net representations and computation of cardinal splines - Construction of cardinal splines - construction of spline application formulas - Construction of Spline interpolation formulas. Chapter 4: Sections 4.1 to 4.6 Unit V: Scaling Functions And Wavelets
	Cardinal Spline spaces. – B-Splines and their basic properties - The two- scale relation and an interpolatory graphical display algorithm - B-Net representations and computation of cardinal splines - Construction of cardinal splines - construction of spline application formulas - Construction of Spline interpolation formulas. Chapter 4: Sections 4.1 to 4.6 Unit V: Scaling Functions And Wavelets Multiresolution analysis - Scaling functions with finite two scale
	Cardinal Spline spaces. – B-Splines and their basic properties - The two- scale relation and an interpolatory graphical display algorithm - B-Net representations and computation of cardinal splines - Construction of cardinal splines - construction of spline application formulas - Construction of Spline interpolation formulas. Chapter 4: Sections 4.1 to 4.6 Unit V: Scaling Functions And Wavelets Multiresolution analysis - Scaling functions with finite two scale relations – Direction sum Decompositions of L 2 (R) - Wavelets and
	Cardinal Spline spaces. – B-Splines and their basic properties - The two- scale relation and an interpolatory graphical display algorithm - B-Net representations and computation of cardinal splines - Construction of cardinal splines - construction of spline application formulas - Construction of Spline interpolation formulas. Chapter 4: Sections 4.1 to 4.6 Unit V: Scaling Functions And Wavelets Multiresolution analysis - Scaling functions with finite two scale relations – Direction sum Decompositions of L 2 (R) - Wavelets and their duals.
	Cardinal Spline spaces. – B-Splines and their basic properties - The two- scale relation and an interpolatory graphical display algorithm - B-Net representations and computation of cardinal splines - Construction of cardinal splines - construction of spline application formulas - Construction of Spline interpolation formulas. Chapter 4: Sections 4.1 to 4.6 Unit V: Scaling Functions And Wavelets Multiresolution analysis - Scaling functions with finite two scale relations – Direction sum Decompositions of L 2 (R) - Wavelets and their duals. Chapter 5: Sections 5.1 to 5.4
Extended Professional	Cardinal Spline spaces. – B-Splines and their basic properties - The two- scale relation and an interpolatory graphical display algorithm - B-Net representations and computation of cardinal splines - Construction of cardinal splines - construction of spline application formulas - Construction of Spline interpolation formulas. Chapter 4: Sections 4.1 to 4.6 Unit V: Scaling Functions And Wavelets Multiresolution analysis - Scaling functions with finite two scale relations – Direction sum Decompositions of L 2 (R) - Wavelets and their duals. Chapter 5: Sections 5.1 to 5.4 Questions related to the above topics, from various competitive
Extended Professional Component (is a part of	Cardinal Spline spaces. – B-Splines and their basic properties - The two- scale relation and an interpolatory graphical display algorithm - B-Net representations and computation of cardinal splines - Construction of cardinal splines - construction of spline application formulas - Construction of Spline interpolation formulas. Chapter 4: Sections 4.1 to 4.6 Unit V: Scaling Functions And Wavelets Multiresolution analysis - Scaling functions with finite two scale relations – Direction sum Decompositions of L 2 (R) - Wavelets and their duals. Chapter 5: Sections 5.1 to 5.4 Questions related to the above topics, from various competitive examinations UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC /
Extended Professional Component (is a part of internal component only,	Cardinal Spline spaces. – B-Splines and their basic properties - The two- scale relation and an interpolatory graphical display algorithm - B-Net representations and computation of cardinal splines - Construction of cardinal splines - construction of spline application formulas - Construction of Spline interpolation formulas. Chapter 4: Sections 4.1 to 4.6 Unit V: Scaling Functions And Wavelets Multiresolution analysis - Scaling functions with finite two scale relations – Direction sum Decompositions of L 2 (R) - Wavelets and their duals. Chapter 5: Sections 5.1 to 5.4 Questions related to the above topics, from various competitive examinations UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC / others to be solved
Extended Professional Component (is a part of internal component only, Not to be included in the	Cardinal Spline spaces. – B-Splines and their basic properties - The two- scale relation and an interpolatory graphical display algorithm - B-Net representations and computation of cardinal splines - Construction of cardinal splines - construction of spline application formulas - Construction of Spline interpolation formulas. Chapter 4: Sections 4.1 to 4.6 Unit V: Scaling Functions And Wavelets Multiresolution analysis - Scaling functions with finite two scale relations – Direction sum Decompositions of L 2 (R) - Wavelets and their duals. Chapter 5: Sections 5.1 to 5.4 Questions related to the above topics, from various competitive examinations UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC / others to be solved (To be discussed during the Tutorial hour)
Extended Professional Component (is a part of internal component only, Not to be included in the External Examination	Cardinal Spline spaces. – B-Splines and their basic properties - The two- scale relation and an interpolatory graphical display algorithm - B-Net representations and computation of cardinal splines - Construction of cardinal splines - construction of spline application formulas - Construction of Spline interpolation formulas. Chapter 4: Sections 4.1 to 4.6 Unit V: Scaling Functions And Wavelets Multiresolution analysis - Scaling functions with finite two scale relations – Direction sum Decompositions of L 2 (R) - Wavelets and their duals. Chapter 5: Sections 5.1 to 5.4 Questions related to the above topics, from various competitive examinations UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC / others to be solved (To be discussed during the Tutorial hour)
Extended Professional Component (is a part of internal component only, Not to be included in the External Examination question paper)	Cardinal Spline spaces. – B-Splines and their basic properties - The two- scale relation and an interpolatory graphical display algorithm - B-Net representations and computation of cardinal splines - Construction of cardinal splines - construction of spline application formulas - Construction of Spline interpolation formulas. Chapter 4: Sections 4.1 to 4.6 Unit V: Scaling Functions And Wavelets Multiresolution analysis - Scaling functions with finite two scale relations – Direction sum Decompositions of L 2 (R) - Wavelets and their duals. Chapter 5: Sections 5.1 to 5.4 Questions related to the above topics, from various competitive examinations UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC / others to be solved (To be discussed during the Tutorial hour)
Extended Professional Component (is a part of internal component only, Not to be included in the External Examination question paper) Skills acquired from this	Cardinal Spline spaces. – B-Splines and their basic properties - The two- scale relation and an interpolatory graphical display algorithm - B-Net representations and computation of cardinal splines - Construction of cardinal splines - construction of spline application formulas - Construction of Spline interpolation formulas. Chapter 4: Sections 4.1 to 4.6 Unit V: Scaling Functions And Wavelets Multiresolution analysis - Scaling functions with finite two scale relations – Direction sum Decompositions of L 2 (R) - Wavelets and their duals. Chapter 5: Sections 5.1 to 5.4 Questions related to the above topics, from various competitive examinations UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC / others to be solved (To be discussed during the Tutorial hour)

Recommended Text	Charles K.Chui , An Introduction to Wavelets, Academic Press, New
	York, 1992.
Reference Books	1. Chui. C.K. (ed) Approximation theory and Fourier Analysis,
	Academic Press Boston, 1991.
	2. Daribechies, I. Wavelets, CBMS-NSF Series in Appl math. SIAM.
	Philadelphia, 1992.
	3. Schumaker, L.L. Spline Functions: Basic Theory, Wiley, New York
	1981.
	4. Nurnberger, G. Applications to Spline Functions, Springer Verlag,
	New York. 1989.5. Walnut, D.F. Introduction to Wavelet Analysis,
	Birhauser, 2004.
Website and	
e-Learning Source	

Students will be able to

CLO1: Understand the terminologies that are used in the wavelets, from Fourier analysis to wavelet analysis.

CLO2: Determine the concepts of the Fourier and Inverse Fourier Transforms.

CLO3: know the Wavelet Transforms and Time Frequency Analysis.

CLO4: Learn the concepts on Cardinal Spline Analysis.

CLO5: Study the Scaling Functions and Wavelets theory.

	POs						PSOs		
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

SEMESTER: II		Credit:3
PART: A	23PMATE25-2: MATHEMATICAL MODELLING	Hours:4
Elective - IV		

Objectives of the	To study the mathematical models through ODE and difference equations and to train
Course	the students to get essential knowledge to develop mathematical models in real life problems.
Course Outline	Unit-1 Mathematical Modelling : Need, Techniques, Classification and Simple
	Illustrations
	Simple Situations Requiring Mathematical Modelling-The Techniques of
	Mathematical Modelling- Classification of Mathematical Models-Some
	Characteristics of Mathematical Models-Mathematical Modelling Through
	Geometry-Mathematical Modelling Through Algebra- Mathematical Modelling
	Through Trigonometry- Mathematical Modelling through Calculus-Limitations of
	Mathematical Modelling .
	Chapter 1
	Unit-II Mathematical Modelling through Ordinary Differential Equations of
	First Order
	Mathematical Modelling through Differential Equations- Linear Growth and Decay
	Models-Non- Linear Growth and Decay Models-Compartment Models-
	Mathematical Modelling in Dynamics Through Ordinary Differential Equations of
	First Order- Mathematical Modelling of Geometrical Problems Through Ordinary
	Differential Equations of First Order.
	Chapter 2
	Unit-III Mathematical Modelling through Systems of Ordinary Differential
	Equations of the First Order
	Mathematical Modelling in Population Dynamics- Mathematical Modelling of
	Epidemics Through Systems of Ordinary Differential Equations of First Order-
	Compartment Models Systems of Ordinary Differential Equations- Mathematical
	Modelling in Economics through Systems of Ordinary Differential Equations of
	First Order- Mathematical Models in Medicine, Arms Race, Battles and International
	Trade in Terms of Systems of Ordinary Differential Equations- Mathematical
	Modelling in Dynamics Through Ordinary Differential Equations of First Order.
	Chapter 3

	Unit-IV Mathematical Modelling Through Difference Equations.
	The need for Mathematical Modelling through Difference Equations: Some Simple
	Models- Basic Theory of Linear Difference Equations With Constant Coefficients-
	Mathematical Modelling through Difference Equations in Economics and Finance-
	Mathematical Modelling through Difference Equations in Population Dynamics and
	Genetics- Mathematical Modelling through Difference Equations in Probability
	Theory- Miscellaneous Examples of Mathematical Modelling through Difference
	Equations.
	Chapter 5
	Unit-V Mathematical Modelling Through Functional Integral , Delay –
	Differential and Differential- Difference Equations
	Mathematical Modelling Through Functional Equations- Mathematical Modelling
	Through Integral Equations- V Mathematical Modelling Through Delay –
	Differential and Differential- Difference Equations.
	Chapter 8
Extended	Questions related to the above topics, from various competitive examinations UPSC /
Professional	TRB / NET / UGC – CSIR / GATE / TNPSC / others to be solved
Component (is a	(To be discussed during the Tutorial hour)
part of internal	
component only,	
Not to be	
included in the	
External	
Examination	
question paper)	
Skills acquired	Knowledge, Problem Solving, Analytical ability, Professional Competency,
from this course	Professional Communication and Transferrable Skill
Recommended	Mathematical Modelling –J.N.Kapur, Wiley Eastern Limited
Text	
Reference Books	
	1. D.J.G.James and J.J.Macdonald, Casestudies in Mathematical Modelling,
	Stanly Thames, Cheltonham.
	2. M.Cross and A.O.Moscrcadini, The art of Mathematical Modelling, EllisHarwood and John Wiley.
	3. C.Dyson, Elvery, Principles of Mathematical Modelling, AcademicPress, NewYork.
	4. D.N.Burghes, Modelling with Difference Equations, EllisHarwood and John Wiley.
Website and	http://www.mathfoundation.com
e-Learning	
Source	

Students will be able to

CLO1: To learn the concepts of Mathematical Modelling Techniques.

CLO2: To understand the ideas of Mathematical Modelling through ODE of first order.

CLO3: To develop the Mathematical Models through systems of ODE of first order.

CLO4: To know the techniques of Mathematical Modelling through Difference equations.

CLO5: To study the Mathematical Models through Differential - Difference equations

	POs						PSOs		
	1	2	3	4	5	6	1	2	3
CL01	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

Objectives of the Course	Introduce the concept of calculus of variation and its applications,
	introduce various types of integral equations and how to solve these
	equations.
Course Outline	Unit I: Variational problems with fixed boundaries
	The concept of variation and its properties – Euler's equation – Variational
	problems for Functionals – Functionals dependent on higher order
	derivatives – Functions of several independent variables – Some
	applications to problems of Mechanics.
	Chapter 1: 1.1 - 1.7 (Text Book - 1)
	Unit II: Variational problems with moving boundaries
	Movable boundary for a functional dependent on two functions – one-sided
	variations –Reflection and Refraction of extremals – Diffraction of light
	rays.
	Chapter 2: 2.1 - 2.5 (Text Book - 1)
	Unit III: Integral Equation
	Introduction – Types of Kernals – Eigen values and Eigen functions –
	connection with differential equations – Solution of an integral equation –
	Initial value problems – Boundary value problem.
	Chapter 1: 1.1 - 1.3 & 1.5 - 1.8 (Text Book - 2)
	Unit IV: Solution of Fredholm integral equation
	Second kind with separable kernel – Orthogonality and reality eigen
	function – Fredholm Integral equation with separable kernel – Solution of
	Fredholm Integral Equation by successive substitution – Successive
	approximation – Volterra integral equation – Solution by successive
	substitution.
	Chapter 2: 2.1 - 2.3 and Chapter 4: 4.1 - 4.5 (Text Book - 2)
	Unit V: Hilbert – Schmidt Theory
	Complex Hilbert space – Orthogonal system of function –Gram-Schmit
	Solutions of orthognalization process-Hilbert-Schmidt theorems -
	Fredholm of integral equation of first kind.
	Chapter 3: 3.1 - 3.4 & 3.8 - 3.9 (Text Book - 2)
Extended Professional	Questions related to the above topics, from various competitive
Component (is a part of	examinations UPSC / TRB / NET / UGC - CSIR / GATE / TNPSC / others
internal component only,	to be solved
Not to be included in the	(To be discussed during the Tutorial hour)
External Examination	
question paper)	
Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional Competency,
course	Professional Communication and Transferrable Skill

Recommended Text	1.A.S. Gupta, Calculus of Variations with Application, Prentice Hall of								
	India, New Delhi,2005.								
	2.Sudir K. Pundir and RimplePundir, Integral Equations and Boundary								
	Value Problems, Pragati Prakasam, Meerut, 2005.								
Reference Books	1. L. Elsgolts, Differential Equations and the Calculus of Variations Mir								
	Publishers, Moscow, 1973.								
	2. Ram P. Kanwal, Linear Integral Equations. Academic Press, New York,								
	1971.								
Website and									
e-Learning Source	1. http://www.maths.ed.ac.uk/~jmf/Teaching/Lectures/CoV.pdf								
	2. https://archive.nptel.ac.in/courses/111/104/111104025/								

Students will be able to

CLO1 -Students know the concept and properties of variational problems with fixed and moving boundaries, functions of dependent and independent variables and also solve some applications problems in mechanics.

CLO2 - Able to solve differential equations and integral equation problems. Find the solution of eigen value, eigen functions.

CLO3 -Implementation of various methods to solve Fredholm Intergral equation.

CLO4 -Students gain acquire knowledge about Hilbert – Schmidt Theory

CLO5 -Deriving the complex Hilbert space – Orthogonal system of function and Solutions of Fredholm of Integral equation of first kind

	POs							PSOs	
	1	2	3	4	5	6	1	2	3
CL01	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

23PMATS26: MATHEMATICAL DOCUMENTATION USING LATEX

Objectives of the Course	Inculcate the computer knowledge. Introduce the LaTeX software								
	Train in the Preparation of Project and dissertations using LaTex.								
	Educate the Latex coding. Understand the concepts of Cross References.								
	Footnotes, Margin pars and Endnotes.								
Course Outline	Unit – I								
	Basic Document and Bibliography								
	What is LATEX – Simple typesetting – Fonts Type size – Document class								
	- page style - page numbering - Formatting lengths - parts of a document								
	– Dividing the document – what next? – Introduction – natbib – The								
	BIBTEX program – BIBTEX Style files – Creating a bibliographic								
	database.								
	Chapter: 1 to 4								
	Unit – II								
	Contents, Index, Glossary, Text, Row and Column								
	Table of contents – Index – Glossary. Borrowed words – Poetry in typing								
	– Making lists – When order matters – Description and definitions.								
	Chapter: 5 to 6								
	Unit – III The continue of a Theorem								
	Typesetting Equations and Theorems								
	Typesetting Equations and Theorems Keeping tabs – Tables – The basics – Custom commands – More on								
	mathematics – mathematics miscellany – New operations– The many fact								
	of mathematics – Symbols – Theory in LATEX – Designer theorem-the								
	amsthm package – Housekeeping.								
	Chapter: 7 to 9								
	Unit – IV								
	Several Kinds of boxes and Floats,								
	LR boxes – Paragraph boxes – Paragraph boxes with specific height –								
	Nested boxes – Role boxes – The figure environment – The table								
	environment.								
	Chapter: 10 to 11								
	Unit – V								
	Cross References in LATEX, Footnotes, Margin pars and Endnotes								
	Why cross reference? – Let LATEX do it – Pointing to a page-the package								
	varioref – Pointing outside-the package xr – Lost the keys? Use lables.tex								
	– Footnotes – Marginal notes – Endnotes.								
	Chapter: 12 to 13								

Extended Professional	Questions related to the above topics, from various competitive							
Component (is a part of	examinations UPSC / TRB / NET / UGC - CSIR / GATE / TNPSC /							
internal component only,	others to be solved							
Not to be included in the	(To be discussed during the Tutorial hour)							
External Examination								
question paper)								
Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional							
course	Competency, Professional Communication and Transferrable Skill							
Recommended Text	A Primer, Latex Tutorials, Indian TEX users group, Trivandrum, India.							
	www.tug.org.in							
Reference Books	1. Peter Flynn, A beginner"s introduction to typesetting with							
	LATEX, Silmaril Consultants, Textual Therapy Division, 2003.							
	2. George Gratzer, More Math Into LATEX, 4th Edition, Springer Science							
	(2007).							
	3. Frank Mittelbach, Michel Goossens, The LaTex Companion, Second							
	Edition, Addison-Wesley, 2004.							
Website and	1. https://www.latex-tutorial.com/tutorials/							
e-Learning Source	2. https://www.latex-tutorial.com/							
	3. <u>http://www.tug.org.in/tutorials.html</u>							

Students will be able to

- CLO1 Understand the basic LaTeX document and the e-contents.
- CLO2 Construct the structures of contents, index, glossary and text.
- CLO3 Create the type setting equations
- CLO4 Discuss several types of boxes and floats.
- CLO5 Prepare the basic documentation.

	POs							PSOs	
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

SEMESTER: III	23ΡΜΑΤC31. COMPLEY ANALVSIS	CREDIT:5							
CORF_VII	251 MATC51. COMILLEA ANAL 1515	HOURS:6							
Pre-requisite	LIG level Complex Analysis								
Objectives of the	• To Study Cauchy integral formula local properties of an	alvtic functions							
Course	general form of Cauchy's theorem and evaluation of defin	ite integral and							
Course	harmonic functions	ne integrar and							
Course Outline	UNIT L: Caughy's Integral Formula: The Index of a point i	with respect to a							
Course Outline	closed curve. The Integral formula Higher derivatives Los	with respect to a							
	closed curve – The integral formula – Higher derivatives. Loc	cal Properties of							
	analytical Functions:	1 T 111							
	Removable Singularities-Taylors's Theorem – Zeros and poles – The local Mapping – The Maximum Principle								
	Aapping – The Maximum Principle.								
	hapter 4 : Section 2 : 2.1 to 2.3								
	Chapter 4 : Section 3 : 3.1 to 3.4	apter 4 : Section 3 : 3.1 to 3.4							
	UNIT-II : The general form of Cauchy's Theorem : Cha	ins and cycles-							
	Simple Continuity - Homology - The General statement of Ca	ple Continuity - Homology - The General statement of Cauchy's Theorem							
	- Proof of Cauchy's theorem - Locally exact differentials- Mu	iltiply connected							
	regions - Residue theorem - The argument principle.	regions - Residue theorem - The argument principle.							
	Chapter 4 : Section 4 : 4.1 to 4.7								
	Chapter 4 : Section 5: 5.1 and 5.2	Chapter 4 : Section 5: 5.1 and 5.2							
	UNIT-III :Evaluation of Definite Integrals and Harmo	UNIT-III :Evaluation of Definite Integrals and Harmonic Functions							
	Evaluation of definite integrals - Definition of Harmonic fur	nction and basic							
	properties - Mean value property - Poisson formula.								
	Chapter 4 : Section 5 : 5.3								
	Chapter 4 : Sections 6 : 6.1 to 6.3								
	UNIT-IV :Harmonic Functions and Power Series Expansion	ns:							
	Schwarz theorem - The reflection principle - Weierstrass theo	orem – Taylor's							
	Series – Laurent series .								
	Chapter 4 : Sections 6.4 and 6.5								
	Chapter 5 : Sections 1.1 to 1.3								
	UNIT-V: Partial Fractions and Entire Functions: Partial fra	actions - Infinite							
	products – Canonical products – Gamma Function- Jense	en's formula –							
	Hadamard's Theorem								
	Chapter 5 : Sections 2.1 to 2.4								
	Chapter 5 : Sections 3.1 and 3.2								
Extended Profession	al Questions related to the above topics, from various competitiv	ve examinations							
Component (is a pa	rt UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC / others to	o be solved							
of internal compone	nt (To be discussed during the Tutorial hour)								
only, Not to l	e								
included in the									
External Examination	n								
Skills acquired fro	m Knowledge Problem Solving Analytical ability Profession	al Competency							
this course	Professional Communication and Transformable Skill	ur competency,							
uns course	FIOLESSIONAL COMMUNICATION and Transferrable SKIII								

Recommended Text	Lars V. Ahlfors, <i>Complex Analysis</i> , (3 rd edition) McGraw Hill Co., New York,
	1979
Reference Books	1. H.A. Presfly, <i>Introduction to complex Analysis</i> , Clarendon Press, oxford, 1990.
	 J.B. Conway, Functions of one complex variables Springer - Verlag, International student Edition, Naroser Publishing Co.1978 E. Hille, Analytic function Thorey (2 vols.), Gonm& Co, 1959. M. Heine, Complex function Theory, Academia Press, New York 1968.
	4. M.Heins, Complex Junction Theory, Academic Press, New Fork, 1968.
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,
e-Learning Source	http://www.opensource.org , http://en.wikipedia.org

Students will be able to

CLO1: Analyze and evaluate local properties of analytical functions and definite integrals.

CLO2: Describe the concept of definite integral and harmonic functions.

CLO3: Demonstrate the concept of the general form of Cauchy's theorem

CLO4: Develop Taylor and Laurent series .

CLO5 Explain the infinite products, canonical products and jensen's formula .

		Pos						PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	3	1	3	2	3	3	3	2	1	
CLO2	2	1	3	1	3	3	3	2	1	
CLO3	3	2	3	1	3	3	3	2	1	
CLO4	1	2	3	2	3	3	3	2	1	
CLO5	3	1	2	3	3	3	3	2	1	

SEMESTER: III	
PART: A	
CORE-VIII	

23PMATC32: PROBABILITY THEORY

Pre-requisite	UG level algebra and calculus							
Objectives of the	To introduce axiomatic approach to probability theory, to study some							
Course	statistical characteristics, discrete and continuous distribution functions and							
	their properties, characteristic function and basic limit theorems of probability.							
Course Outline	UNIT-I : Random Events and Random Variables: Random events -							
	Probability axioms - Combinatorial formulae - conditional probability -							
	Bayes Theorem - Independent events - Random Variables - Distribution							
	Function – Joint Distribution – Marginal Distribution – Conditional							
	Distribution – Independent random variables – Functions of random variables.							
	Chapter 1: Sections 1.1 to 1.7							
	Chapter 2 : Sections 2.1 to 2.9							
	NIT-II : Parameters of the Distribution : Expectation- Moments – The hebvshev Inequality – Absolute moments – Order parameters – Moments of							
	Thebyshev Inequality – Absolute moments – Order parameters – Moments of andom vectors – Regression of the first and second types.							
	andom vectors – Regression of the first and second types.							
	UNIT III. Characteristic functions . Ducmentics of characteristic functions							
	UNIT-III: Unaracteristic functions : Properties of characteristic functions – Characteristic functions and moments semillinvariants characteristic							
	function of the sum of the independent random variables – Determination of							
	listribution function by the Characteristic function – Characteristic function of							
	nultidimensional random vectors – Probability generating functions.							
	Chapter 4 : Sections 4.1 to 4.7							
	UNIT-IV : Some Probability distributions: One point , two point , Binomial							
	Polya – Hypergeometric – Poisson (discrete) distributions – Uniform –							
	ormal gamma – Beta – Cauchy and Laplace (continuous) distributions.							
	napter 5 : Section 5.1 to 5.10 (Omit Section 5.11)							
	NIT-V: Limit Theorems : Stochastic convergence – Bernaulli law of large							
	numbers – Convergence of sequence of distribution functions – Levy-Cramer							
	Theorems – de Moivre-Laplace Theorem – Poisson, Chebyshev, Khintchine							
	weak law of large numbers – Lindberg Theorem – Lapunov Theroem –							
	of large numbers							
	Chapter 6 : Sections 6.1 to 6.4, 6.6 to 6.9, 6.11 and 6.12, (Omit Sections							
	6.5, 6.10.6.13 to 6.15)							
Extended Professional	Questions related to the above topics, from various competitive examinations							
Component (is a part	UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC / others to be solved							
of internal component	(To be discussed during the Tutorial hour)							
only. Not to be								
included in the								
External Examination								
question paper)								
Skills acquired from	Knowledge, Problem Solving, Analytical ability, Professional Competency							
this course	Professional Communication and Transferrable Skill							
Extended Professional Component (is a part of internal component only, Not to be included in the External Examination question paper) Skills acquired from this course	ONTI-V: Limit Theorems : Stochastic convergence – Bernaulii law of large numbers – Convergence of sequence of distribution functions – Levy-Cramer Theorems – de Moivre-Laplace Theorem – Poisson, Chebyshev, Khintchine Weak law of large numbers – Lindberg Theorem – Lapunov Theroem – Borel-Cantelli Lemma - Kolmogorov Inequality and Kolmogorov Strong Law of large numbers. Chapter 6 : Sections 6.1 to 6.4, 6.6 to 6.9 , 6.11 and 6.12. (Omit Sections 6.5, 6.10, 6.13 to 6.15) Questions related to the above topics, from various competitive examinations UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC / others to be solved (To be discussed during the Tutorial hour) Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill							

Recommended Text	M. Fisz, Probability Theory and Mathematical Statistics, John Wiley and
	Sons, New York, 1963.
Reference Books	1. R.B. Ash, Real Analysis and Probability, Academic Press, New York, 1972
	2. K.L.Chung, A course in Probability, Academic Press, New York, 1974.
	4. R.Durrett, <i>Probability : Theory and Examples</i> , (2 nd Edition) Duxbury Press,
	New York, 1996.
	5. V.K.RohatgiAn Introduction to Probability Theory and Mathematical
	Statistics, Wiley Eastern Ltd., New Delhi, 1988(3rd Print).
	6. S.I.Resnick, A Probability Path, Birhauser, Berlin, 1999.
	7. B.R.Bhat, <i>Modern Probability Theory</i> (3 rd Edition), New Age International
	(P)Ltd, New Delhi, 1999
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,
e-Learning Source	http://www.opensource.org, http://www.probability.net

Students will be able to

CLO1: To define Random Events, Random Variables, to describe Probability, to apply Bayes, to define Distribution Function, to find Joint Distribution function, to find Marginal Distribution and Conditional Distribution function, to solve functions on random variables.

CLO2: To define Expectation, Moments and Chebyshev Inequality, to solve Regression of the first and second types.

CLO3: To define Characteristic functions, to define distribution function, to find probability generating functions, to solve problems applying characteristic functions

CLO4: To define One point, two-point, Binomial distributions, to solve problems of Hypergeometric and Poisson distributions, to define Uniform, normal, gamma, Beta distributions, to solve problems on Cauchy and Laplace distributions

CLO5: To discuss Stochastic convergence, Bernaulli law of large numbers, to elaborate Convergence of sequence of distribution functions, to prove Levy-Cramer Theorems and de Moivre-Laplace Theorems, to explain Poisson, Chebyshev, Khintchine Weak law of large numbers, to explain and solve problems on Kolmogorov Inequality and Kolmogorov Strong Law of large numbers.

	Pos							PSOs	
	1	2	3	4	5	6	1	2	3
CL01	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

SEMESTER: III		CDEDIT.5
PART: A	23PMATC33: TOPOLOGY	
CORE-IX		HUUKS:0

Pre-requisite	Real Analysis					
Objectives of the	To study topological spaces, continuous functions, connectedness,					
Course	compactness, countability and separation axioms.					
Course Outline	UNIT-I: Topological spaces : Topological spaces – Basis for a topology –					
	The order topology – The product topology on $X \times Y$ – The subspace topology					
	– Closed sets and limit points.					
	Chapter 2 : Sections 12 to 17					
	UNIT-II :Continuous functions: Continuous functions – the product					
	topology – The metric topology.					
	Chapter 2 : Sections 18 to 21 (Omit Section 22)					
	UNIT-III :Connectedness: Connected spaces- connected subspaces of the					
	Real line – Components and local connectedness.					
	Chapter 3 : Sections 23 to 25.					
	UNIT-IV : Compactness : Compact spaces – compact subspaces of the					
	Real line – Limit Point Compactness – Local Compactness.					
	Chapter 3 : Sections 26 to 29.					
	UNIT-V: Countability and Separation Axiom: The Countability					
	Axioms – The separation Axioms – Normal spaces – The					
	Urysohn Lemma – The Urysohnmetrization Theorem – The Tietz					
	extension theorem.					
	Chapter 4 : Sections 30 to 35.					
Extended Professional	Questions related to the above topics, from various competitive examinations					
Component (is a part	UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC / others to be solved					
of internal component	(To be discussed during the Tutorial hour)					
only, Not to be						
included in the						
External Examination						
question paper)						
Skills acquired from	Knowledge, Problem Solving, Analytical ability, Professional Competency,					
this course	Professional Communication and Transferrable Skill					
Recommended Text	James R. Munkres, <i>Topology</i> (2 nd Edition) Pearson Education Pve. Ltd., Delhi-					
	2002 (Third Indian Reprint)					

Reference Books	1. J. Dugundji, <i>Topology</i> , Prentice Hall of India, New Delhi, 1975.
	2. George F.Sinmons, Introduction to Topology and Modern Analysis, McGraw Hill Book Co., 1963
	3. J.L. Kelly, General Topology, Van Nostrand, Reinhold Co., New York
	4. L.Steen and J.Subhash, Counter Examples in Topology, Holt, Rinehart and Winston, New York, 1970.
	5. S.Willard, General Topology, Addison - Wesley, Mass., 1970
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,
e-Learning Source	http://www.opensource.org , http://en.wikipedia.org

Students will be able to

CLO1: Define and illustrate the concept of topological spaces and the basic definitions of open sets, neighbourhood, interior, exterior, closure and their axioms for defining topological space. **CLO2**: Understand continuity, compactness, connectedness, homeomorphism and topological properties.

CLO3: Analyze and apply the topological concepts in Functional Analysis.

CLO4: Ability to determine that a given point in a topological space is either a limit point or not for a given subset of a topological space.

CLO5: Develop qualitative tools to characterize connectedness, compactness, second countable, Hausdorff and develop tools to identify when two are equivalent (homeomorphic).

	Pos						PSOs		
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

SEMESTER: III		CDEDIT.4
PART: A	23PMATC34: MECHANICS	UNUDS.4
CORE-X		HOUKS:0

Pre-requisite	UG level Calculus and Differential equations.
Objectives of the	To study mechanical systems under generalized coordinate systems, virtual
Course	work, energy and momentum, to study mechanics developed by Newton,
	Langrange, Hamilton Jacobi and Theory of Relativity due to Einstein.
Course Outline	UNIT-I : Mechanical Systems : The Mechanical system- Generalised
	coordinates – Constraints - Virtual work - Energy and Momentum
	Chapter 1 : Sections 1.1 to 1.5
	UNIT-II : Lagrange's Equations: Derivation of Lagrange's equations-
	Examples- Integrals of motion.
	Chapter 2 : Sections 2.1 to 2.3 (Omit Section 2.4)
	UNIT-III : Hamilton's Equations : Hamilton's Principle - Hamilton's Equation
	- Other variational principle.
	Chapter 4 : Sections 4.1 to 4.3 (Omit section 4.4)
	UNIT - IV : Hamilton-Jacobi Theory : Hamilton Principle function -
	Hamilton-Jacobi Equation - Separability
	Chapter 5 : Sections 5.1 to 5.3
	UNIT-V : Canonical Transformation : Differential forms and generating
	functions – Special Transformations– Lagrange and Poisson brackets.
	Chapter 6 : Sections 6.1, 6.2 and 6.3 (omit sections 6.4, 6.5 and 6.6)
Extended Professional	Questions related to the above topics, from various competitive examinations
Component (is a part	UPSC / TRB / NET / UGC - CSIR / GATE / TNPSC / others to be solved
of internal component	(To be discussed during the Tutorial hour)
only, Not to be	
included in the	
External Examination	
question paper)	
Skills acquired from	Knowledge, Problem Solving, Analytical ability, Professional Competency,
this course	Professional Communication and Transferrable Skill
Recommended Text	D. Greenwood, Classical Dynamics, Prentice Hall of India, New Delhi, 1985.
Reference Books	1. H. Goldstein, Classical Mechanics, (2 nd Edition) Narosa Publishing House,
	New Delhi.
	2. N.C.Rane and P.S.C.Joag, <i>Classical Mechanics</i> , Tata McGraw Hill, 1991.
	3. J.L.Synge and B.A.Griffth, Principles of Mechanics (3rd Edition) McGraw
	Hill Book Co., New York, 1970.
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,
e-Learning Source	http://www.opensource.org, www.physicsforum.com

Students will be able to

CLO1: Demonstrate the knowledge of core principles in mechanics.

CLO2: Interpret and consider complex problems of classical dynamics in a systematic way.

CLO3: Apply the variation principle for real physical situations.

CLO4: Explore different applications of these concepts in the mechanical and electromagnetic fields.

CLO5: Describe and apply the concept of Angular momentum, Kinetic energy and Moment of inertia of a particle

	Pos						PSOs		
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

SEMESTER: III			ODEDIT 2				
PART: A		23PMATE35-1: STOCHASTIC PROCESSES	CREDIT:3				
Elective – V			HOURS:3				
Pre-requisite							
Objectives of the	Course	Acquire the skill of advanced level of mathematical sophistication and					
		enhancing the horizons of knowledge, understanding of ap	plicability of				
		different concepts of stochastic processes, use of stochastic	c models in				
		different areas.					
Course Outline		UNIT – I :Stochastic Processes					
		Introduction - Specification of Stochastic Processes -Stati	ionary Processes				
		-Martingales -Markov Chains: Definition and Examples -	-Higher				
		Transition Probabilities – Generalization of independent B	ernoulli Trials:				
		Sequence of Chain Dependent Trials –Classification of Sta Charter II (Sections: 1 to 4) Charter III (Sections: 1 to 4)	ates and Chains.				
		UNIT II (Sections: 1 to 4), Chapter III (Sections: 1 to 4)					
		Determination of Higher Transition Probabilities – Stabilit	ty of a Markov				
		System_ Markov Chain with Denumerable Number of Sta	tes _Reducible				
		Chains	ies –Reducible				
		Chapter III (Sections: 5.6.8 and 0)					
		UNIT III (Sections: 5,0,8 and 9)	a. Daissan				
		Discrete State Space	te: Poisson				
		Doisson Drocoss Doisson Drocoss and Delated Distributions					
		Concredization of Doisson Process and Related Distributions –					
		Broass with Discrete State Space (Continuous Time Markov Chains)					
		Chapter IV (Sections: 1 to 5)					
		Chapter IV (Sections: 1 to 5)					
		UNIT – IV :Markov Chains and Markov Processes wit	h Continuous				
		State Space	.				
		Markov Chains with Continuous State Space – Introductio	n: Brownian				
		Motion – Wiener Process – Differential Equations for a W	iener Process –				
		Kolmogorov Equations – First Passage Time Distribution	for Wiener				
		Process.					
		Chapter III (Section: 11), Chapter V (Sections: 1 to5)					
		UNIT – V :Renewal Processes and Theory					
		Renewal Process – Renewal Processes in Continuous Time	e – Renewal				
		Equation – Stopping time: Wald's Equation – Renewal The	eorems –				
		Delayed and Equilibrium Renewal processes.					
		Chapter VI (Sections: 1 to 6)					
Extended Pro	fessional	Questions related to the above topics, from vario	ous competitive				
Component (is a	part of	examinations UPSC / TRB / NET / UGC - CSIR / GA	ATE / TNPSC /				
internal component	nt only,	others to be solved					
Not to be include	d in the	(To be discussed during the Tutorial hour)					
External Exa	mination						
question paper)							

Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional
course	Competency, Professional Communication and Transferrable Skill
Recommended Text	J. Medhi, Stochastic Processes, Wiley Eastern Limited, New Delhi,
	(Second Edition), 1994.
Reference Books	1. S. Karlin and H.M. Taylor, A First Course in Stochastic Processes,
	Academic Press (second edition), New York, 2011.
	2. S.M. Ross, Stochastic Processes, Wiley India Pvt., Ltd., 2nd Edition,
	2008.
Website and	
e-Learning Source	

Students will be able to

CLO 1-Understand the concept of Stochastic Processes

CLO 2-Understand the concept of Markov Chains.

CLO 3-Understand the concept of Markov Processes with Discrete State Space

CLO 4-Understand the concept of Markov Chains and Markov Processes with Continuous State Space.

CLO 5- Know the Renewal Processes in Continuous Time, Renewal Equation, Equilibrium Renewal processes.

	POs						PSOs		
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

SEMESTER: III			ODEDIT 2			
PART: A	23PM	IATE35-2: ADVANCED NUMERICAL ANALYSIS	UNIDS.2			
Elective – V			HOUKS:5			
Pre-requisite						
Objectives of the Course		Introduce the derivation of numerical methods with error analysis, Study the transcendental and polynomial equations ,acquire the knowledge of system of linear algebraic equations ,understand the differentiation and integration ,Solve problems on interpolation and ordinary differential equations.				
Course Outline		UNIT-I				
		Transcendental and Polynomial Equations				
		Iterationmethodsbasedonseconddegreeequation-Rateofcor	vergence-			
		Iterationmethods- Methods for complex roots- Polynomia	equations.			
		Chapter2:Sections 2.4 to 2.8				
		UNIT–II				
		System of Linear Algebraic Equations and Eigen Value Problems				
		Direct methods-Triangularisation, Cholesky and Partition methods-Error				
		analysis-Iteration methods - Eigen values and Eigenvector	rs – Jacobi's			
		method, Given's method, Rutishaugher method and Power	method.			
		Chapter3: Sections 3.2to 3.5.				
		UNIT-III				
		Interpolation and Approximation				
		Hermite Interpolations –Piecewise and Spline Interpolation–Bivariate				
		interpolation-Approximation-Least Square approximation	n– Uniform			
		approximation.				
		Chapter4:Sections4.5to 4.10				
		UNIT-IV				
		Differentiation and Integration				
		Numerical Differentiation–Partial Differentiation–Numeric	cal Integration			
		methods based on undetermined coefficients- Double integ	gration.			
		Chapter5:Sections5.2,5.5, 5.6, 5.8, 5.11				
		UNIT-V				
		Ordinary Differential Equations				
		Numericalmethods-Singlestepmethods-Multistepmethods	-Predictor-			
		Correctormethods. Chapter6:Sections6.2 to 6.5				
Extended Prof	fessional	Questions related to the above topics, from vario	ous competitive			
Component (is a	part of	examinations UPSC / TRB / NET / UGC – CSIR / GA	ATE / TNPSC /			
internal compone	nt only,	others to be solved				
Not to be included in the		(To be discussed during the Tutorial hour)				
External Examination						
question paper)						
Skills acquired fr	om this	Knowledge, Problem Solving, Analytical ability	, Professional			
course		Competency, Professional Communication and Transferra	ble Skill			

Recommended Text	M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods For
	Scientific and Engineering Computation, 3 rd Edition, New Age
	International,1993.
Reference Books	1. S.D. CorteanddeBoor, Elementary Numerical Analysis–An Algorithmic
	approach,3 rd Edition, McGraw Hill International Book Company, 1980.
	2. James B.Scarboraugh, Numerical Mathematical Analysis, Oxford
	&IBH Publishing Company, New Delhi.
	3. F.B. Hildebrand, Introduction To Numerical Analysis, Mc Graw Hill,
	NewYork,1956.
Website and	1. https://www.math.upenn.edu/~wilf/DeturckWilf.pdf
e-Learning Source	2. https://web.archive.org/web/20120225082123/http://kr.cs.ait.ac.th/~
	radok/math/mat7/stepsa.htm
	3. https://ocw.mit.edu/courses/mechanical-engineering/2-993j-
	introduction-to-numerical-analysis-for-engineering-13-002j-spring-2005/

Students will be able to

CLO1 -Examine the solutions of transcendental and polynomial equations

- CLO2 -Understand the system of linear algebraic equations

- CLO3-Analyse the interpolation and extrapolation CLO4 -Evaluate numerical differentiation and integrations CLO5 -Solve the differential equations by single and multi-step methods

			PSOs						
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

SEMESTER: III PART: B (i) Skill Enhancement Course

23PMATS36: STATISTICS WITH SCILAB

CREDIT:2 HOURS:3

Pre-requisite	
Objectives of	Understand the concepts of the SCILAB techniques
the Course	
Course	Unit-I: SCILAB Basics Overview of SCILAB – Get started – Basic elements of the language
Outline	– Matrices
	Unit-II: SCILAB Programming Looping and Branching – Functions – Plotting
	Unit-III: Application into Basic Statistics Measures of Central Tendency – Descriptive
	Statistics – Measures of Dispersion
	Unit-IV: Application into Advanced Statistics Cumulated distribution function – Data with
	missing values – Hypothesis Testing
	Unit-V: Optimization Toolbox FOSSEE SCILAB Optimization Toolbox - fminsearch -
	fsolve-fminbnd-fmincon-linprog-intlinprog-intfmincon-quadprog-intquadprog,
	Genetic Algorithm (optim_ga)
Extended	Questions related to the above topics, from various competitive examinations UPSC / TRB /
Professional	NET / UGC - CSIR / GATE / TNPSC / others to be solved
Component (is	(To be discussed during the Tutorial hour)
a part of	
internal	
component	
only, Not to be	
included in the	
External	
Examination	
question paper)	
Skills acquired	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional
from this	Communication and Transferrable Skill
course	

Recommended	1. Introduction to SCILAB – Michael Baudin From SCILAB Consortium, 2010							
Text	2. SCILAB Online Help –							
	https://help.scilab.org/docs/5.5.2/en_US/section_33491857221a48388b878311e9f4b67e.html							
	3. FOSSEE SCILAB Toolbox – Optimization Toolbox https://scilab.in/fossee-							
	scilabtoolbox/optimization-toolbox/functions							
	4. SCILAB Online Help – optim_ga –							
	https://help.scilab.org/docs/5.5.2/en_US/optim_ga.html.							
	Unit-I: Chapter 1, 2, 3, 4 of Text Book 1							
	Unit-II: Chapter 5, 6, 7 of Text Book 1							
	Unit-III: Text Book 2							
	Unit-IV: Text Book 2							
	Unit-V: Text Book 3 and 4							
Reference	1. <u>https://www.scilab.org/tutorials</u>							
Books	2. SCILAB help documentation – Statistics							
	3. Basic Statistics and Probability with SCILAB – Gilberto E. Urroz infoclearinghouse.com							
	https://www.scilab.org/sites/default/files/Basic%20Statistics%20and%20Probability%20w							
	%20SCILAB%20-%20Gilberto%20E.%20Urroz%20-%202001.pdf							
Website and	1. https://onlinecourses.nptel.ac.in/noc19_ma29/prev							
e-Learning	2. https://archive.nptel.ac.in/courses/111/107/111107104/							
Source	3. https://onlinecourses.nptel.ac.in/noc21_mg74/preview							
Source	4. https://mathworld.wolfram.com/topics/Optimization.html							

Students will be able to

CLO 1-Understand the basic concepts of the SCILAB.

CLO 2-Understand the concept of the Looping and branching of SCILAB.

CLO 3-Understand the concept of the measures of Central tendency measures of dispersion.

CLO 4-Understand the cumulated distribution function and hypothesis testing.

CLO 5-Understand the optimization toolbox.

	Pos							PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	3	1	3	2	3	3	3	2	1	
CLO2	2	1	3	1	3	3	3	2	1	
CLO3	3	2	3	1	3	3	3	2	1	
CLO4	1	2	3	2	3	3	3	2	1	
CLO5	3	1	2	3	3	3	3	2	1	

SEMESTER: III PART: B (ii)	23PMATI37: Summer Internship	CREDIT:2 HOURS:-
-------------------------------	------------------------------	---------------------

(Refer to the Regulations)

SEMESTER: IV PART: A CORE XI	V	23PMATC41: FUNCTIONAL ANALYSIS	CREDIT:5 HOURS:6					
Pre-requisite	Element	s of Real Analysis						
Objectives of the Course	To prov focusing student' techniqu	o provide students with a strong foundation in functional analysis, ocusing on spaces, operators and fundamental theorems. To develop tudent's skills and confidence in mathematical analysis and proof echniques.						
Course Outline	 UNIT-I :Banach Spaces: The definition and some examples – Continuous linear transformations – The Hahn-Banach theorem – The natural imbedding of <i>N</i> in <i>N</i>**- The open mapping theorem – The conjugate of an Operator. Chapter 9:Sections 46-51 							
	UNIT-I Orthogo adjoint o Projectio	I :Hilbert Spaces: The definition and some simple proponal complements–Ortho normal sets–The conjugate spot an operator–self-adjoint operators-Normal and unitations. r10:Sections52-59	berties– ace <i>H</i> *-The ry operators –					
		II. Einite Dimensional Speetral Theory, Matrices D	atorminanta					
	and the	II : Finite-Dimensional Spectral Theory: Matrices – Despectrum of an operator – The spectral theorem	eterminants					
	Chapte	r 11:Sections 60-62 V : Conorol Proliminarios on Panach Algebras: The da	finition and					
	Some ex	amples – Regular and singular elements – Topological	divisors of					
	zero – T semi-sir	The spectrum – The formula for the spectral radius– The nplicity.	e radical and					
	Chapte	r 12:Sections 64-69						
	UNIT-V	: The Structure of Commutative Banach Algebras: Th	e Gelfand					
	mapping Banach	g – Application of the formula $r(x) = \lim x^n ^{1/n}$ Is algebras-The Gelfand-Neumark theorem.	nvolutions in					
	Chapte	r 13:Sections 70-73						
Extended Professional Component (is a part of internal component only, Not to be included in the External Examination question paper)	Question UPSC / (To be d	ns related to the above topics, from various competiti TRB / NET / UGC – CSIR / GATE / TNPSC / others t liscussed during the Tutorial hour)	ve examinations o be solved					
Skills acquired from	Knowle	edge, Problem Solving, Analytical ability, Profession	nal Competency,					
this course	Professi	onal Communication and Transferrable Skill						
Recommended Text	G.F.Sin Hill Edu	nmons, Introduction to Topology and Modern Analysis acation (India)Private Limited, New Delhi, 1963.	s, McGraw					

Reference Books	1. W.Rudin, Functional Analysis, McGraw Hill Education (India) Private Limited, New Delhi, 1973.
	 B.V. Limaye, Functional Analysis, New Age International, 1996. C. Goffman and G. Pedrick, First course in Functional Analysis,
	Prentice Hall of India, NewDelhi, 1987.
	 E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons, New York, 1978.
	5. M. Thamban Nair, Functional Analysis, A First course, Prentice Hall of India, New Delhi, 2002.
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,
e-Learning Source	http://www.opensource.org, http://en.wikiepedia.org

Students will be able to

CLO1: Understand the Banach spaces and Transformations on Banach Spaces.

CLO2: Prove Hahn Banach theorem and open mapping theorem.

CLO3: Describe operators and fundamental theorems.

CLO4: Validate orthogonal and orthonormal sets.

CLO5: Analyze and establish the regular and singular elements.

		Pos						PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	3	1	3	2	3	3	3	2	1	
CLO2	2	1	3	1	3	3	3	2	1	
CLO3	3	2	3	1	3	3	3	2	1	
CLO4	1	2	3	2	3	3	3	2	1	
CLO5	3	1	2	3	3	3	3	2	1	

SEMESTER: IV	V							
PART: A		23PMATC42: DIFFERENTIAL GEOMETRY	CREDIT:5					
CORE XII			HOUKS:0					
Pre-requisite	Linear	Algebra concepts and Calculus						
Objectives of the	This co	urse introduces space curves and their intrinsic proper	ties of a surface					
Course	and ge	odesics. Further the non-intrinsic properties of s	urface and the					
	differen	tial geometry of surfaces are explored						
Course Outline	UNIT-I	: Space curves: Definition of a space curve – Arc le	ngth – tangent –					
	normal	and binormal – curvature and torsion – contact betw	veen curves and					
	surfaces	- tangent surface- involutes and evolutes- Intrins	sic equations –					
	Fundamental Existence Theorem for space curves- Helies.							
	Chapter I : Sections 1 to 9.							
	UNIT-I	UNIT-II :Intrinsic properties of a surface: Definition of a surface – curves						
	on a surface - Surface of revolution - Helicoids - Metric- Direction							
	coefficients - families of curves- Isometric correspondence- Intrinsic							
	properties.							
	Chapter II: Sections 1 to 9.							
	UNIT-III: Geodesics: Geodesics – Canonical geodesic equations – Norm							
	property of geodesics- Existence Theorems - Geodesic parallels - Geodesic							
	curvature- Gauss- Bonnet Theorem - Gaussian curvature- surface of constant							
	curvature.							
	Chapter II: Sections 10 to 18.							
	UNIT-I	V: Non Intrinsic properties of a surface:						
	The sec	ond fundamental form- Principle curvature - Lines	of curvature –					
	Develop	able - Developable associated with space curves and	with curves on					
	surface	- Minimal surfaces – Ruled surfaces.						
	Chapte	r III: Sections 1 to 8.						
	UNIT-V	7 :Differential Geometry of Surfaces :						
	Compac	t surfaces whose points are umblics- Hilbert's len	nma – Compact					
	surface	of constant curvature - Complete surface and their cl	naracterization –					
	Hilbert'	s Theorem – Conjugate points on geodesics.						
	Chapte	r IV : Sections 1 to 8 (Omit 9 to 15).						
Extended Professional	Question	ns related to the above topics, from various competiti	ve examinations					
Component (is a part	UPSC /	TRB / NET / UGC – CSIR / GATE / TNPSC / others t	o be solved					
of internal component	(To be d	liscussed during the Tutorial hour)						
only, Not to be								
included in the								
External Examination								
question paper)								
Skills acquired from	Knowle	edge, Problem Solving, Analytical ability, Profession	al Competency,					
this course	Professi	onal Communication and Transferrable Skill						
Recommended Text	T.J.Will	more, An Introduction to Differential Geometry, Or	cford University					
	Press	,(17 th Impression) New Delhi 2002. (Indian Print)						

Reference Books	1. Struik, D.T. Lectures on Classical Differential Geometry, Addison -
	Wesley, Mass. 1950.
	2. Kobayashi. S. and Nomizu. K. <i>Foundations of Differential Geometry</i> , Inter science Publishers, 1963.
	3. Wilhelm Klingenberg: <i>A course in Differential Geometry</i> , Graduate Texts in Mathematics, Springer-Verlag 1978.
	4. J.A. Thorpe <i>Elementary topics in Differential Geometry</i> , Under- graduate Texts in Mathematics, Springer - Verlag 1979.
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,
e-Learning Source	http://www.opensource.org, www.physicsforum.com

Students will be able to

CLO1: Explain space curves, Curves between surfaces, metrics on a surface, fundamental form of a surface and Geodesics.

CLO2: Evaluate these concepts with related examples.

CLO3: Compose problems on geodesics.

CLO4: Recognize applicability of developable.

CLO5: Construct and analyze the problems on curvature and minimal surfaces

	Pos							PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	3	1	3	2	3	3	3	2	1	
CLO2	2	1	3	1	3	3	3	2	1	
CLO3	3	2	3	1	3	3	3	2	1	
CLO4	1	2	3	2	3	3	3	2	1	
CLO5	3	1	2	3	3	3	3	2	1	

SEMESTER: IV		CDEDIT.7
PART: A	23PMATD43: PROJECT WITH VIVA VOCE	UQUDS.10
CORE XII		HOUKS:10

(Refer to the Regulations)

SEMESTER: IV PART: A ELECTIVE	23PMATE44-1: RESOURCE MANAGEMENT TECHNIQUES	CREDIT:3 HOURS:4				
Pre-requisite						
Objectives of the Course	Understand the concepts of the Linear Programming Problems, Artificial Variable Technique, Games and Strategies, Inventory Problems and Queueing Problems.					
Course Outline	UNIT: I Linear Programming Problems					
	Introduction of Linear Programming Problems, slack, surplus, artificial variables					
	Graphical method, Simplex method, applications of simplex method.					
	Formulating a Dual Problem, Dual simplex method, Big-M method, Two					
	Phase simplex method. (simple problems only).					
	UNIT: III GAME THEORY					
	Introduction, Some basic terms, the max min-minimax principle, game					
	without saddle points-mixed strategies, graphical solutions of 2 x n and m					
	x 2 games.					
	UNIT: IV INVENTORY THEORY					
	shortages the fundamental problem of FOO Problem of FOO with					
	several production runs of unequal length, problem of EOQ with finite					
	replenishment, Deterministic inventory problems with shortages (simple					
	problems only).					
	UNIT: V QUEUEING THEORY					
	Introduction, Queueing system, elements of a queueing system, operating					
	characteristics of a queueing system, deterministic queueing system,					
	classification of queueing system, (M/M/1): (∞ / FIFO) mo	del, (M/M/1):				
	(N/ FIFO) model, (M/M/C): (∞ / FIFO) model.					
Recommended Text	Operations Research Kanti Swarup, P.K. Gupta, Man Mol	han.(Sultan				
Defenence Deeles	Chand & Sons) Sixteenth Thoroughly Revised Edition.	usution Hall of				
Kelerence Books	I. Handy A. Tana, Operations Research (Sixin Edution) Pl India Private Limited New Delbi 1997	rentice-Hall of				
	2 Panneerselvam R Operations Research 2 nd Edition PH	I Learning				
	Private Limited, Delhi, 2015.	1 Loui mig				
	3. PremkumarGupta, Er. Hira, D.S., Operations Research, 7 th Edition					
	S.Chand& Company Pvt.Ltd.2014.					
Website and	1. https://onlinecourses.nptel.ac.in/noc19_ma29/prev					
e-Learning Source	2. https://archive.nptel.ac.in/courses/111/107/111107104/					
	 3. https://onlinecourses.nptel.ac.in/noc21_mg/4/preview 4. https://mathworld.wolfram.com/topics/Optimization.htm 	nl				

Students will be able to

CLO 1-Understand the concept of the Linear Programming Problems.

CLO 2-Understand the concept of the Artificial Variable Technique.

CLO 3-Understand the concept of the Games and Strategies.

CLO 4-Understand the Inventory Problems.

CLO 5-Understand the Queueing Problems.

	POs					PSOs			
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

SEMESTER: IV PART: A ELECTIVE	23PMATE44-2: PYTHON PROGRAMMING (Practical) (20% Theory + 80% Practical)**	CREDIT:3 HOURS:4					
** Evaluation is to be done	both for theory (15 marks) and practical (60 marks) components separately						
by the examiners who will be conducting the practical and the marks should be awarded out of							
Questions for the theory and practical are to be set by the concerned examiners.							
Pre-requisite							
Objectives of the Course	1. Understand the basic components of computer programming using the						
	Python language.						
	2. Demonstrate significant experience with the Python program						
	development environment.						
	3. To learn and know the concepts of file handling, exception handling						
	and database connectivity.						
Course Outline	Unit 1: Introduction to Python - Why Python - Installing in various						
	Operating Systems - Executing Python Programs - Basic P	Programming					
	concepts - Variables, expressions and statements - Input/ C	Dutput –					
	Operators. (9 hours)						
	Unit 2: Conditions - Functions - Arguments - Return values - Iteration -						
	Loops - Strings -Data Structures - Lists - Dictionaries - Tuples -						
	Sequences - Exception Handling.						
	Unit 3: File Handling - Modules - Regular Expressions - Text handling -						
	Object Oriented Programming - Classes - Objects - Inheritance -						
	Overloading – Polymorphism.						
	Unit 4: Introduction to Graphics programming - Introduction to GTK -						
	PyGTK - Developing GUI applications using pyGTK - Scientific						
	Programming using NumPy / SciPy - Image Processing	ng - Processing					
	multimedia files -Network Programming - Web services using SOAP.						
	Introduction to Graphics programming – PyGame.						
	Unit 5: Introduction to Version Control Systems - Subvers	ion/Git, Writing					
	Unit Tests, Creating Documentation, Contributing to Open Source						
	Projects.						
Skills acquired from this	Knowledge, Problem Solving, Analytical ability	v, Professional					
course	Competency, Professional Communication and Transferra	ble Skill					
Recommended Text	Allen B. Downey, Think Python: How to Think Like a Computer Scientis						
	(Second Edition), Shroff /O'Reilly Publishers, 2016						
	(http://greenteapress.com/wp/think- python/)						

Reference Books	 1.Charles Dierbach, Introduction to Computer Science using Python: A Computational Problem-Solving Focus, Wiley India Edition, 2013 2. John V Guttag, Introduction to Computation and Programming Using Python', Revised and expanded Edition, MIT Press, 2013. 3. Kenneth A. Lambert, Fundamentals of Python: First Programs, CENGAGE Learnin 3. Kenneth A. Lambert, Fundamentals of Python: First Programs, CENGAGE Learning, 2012.
Website and	1. https://nptel.ac.in/courses/106/106/106106182/
e-Learning Source	2. <u>https://nptel.ac.in/courses/106/106/106106145/</u>

Students will be able to

CLO 1- Develop algorithmic solutions to simple computational problems.

CLO 2- Read, write, execute by hand simple Python programs.

CLO 3- Represent compound data using Python lists, tuples, and dictionaries.

CLO 4- Design and implement a program to solve a real world problem.

CLO 5- Use Python lists, tuples, dictionaries for representing compound data.

	Pos					PSOs			
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1
SEMESTER: IV PART: B Skill Enhancement Course-III	23PMATS45: Mathematics for Competitive Examinations	CREDIT:2 HOURS:4							
--	---	---------------------	--	--	--				
Pre-requisite									
Objectives of the Course	To develop strong background on different subjects in Ma	thematics with							
	application skills.								
Course Outline	UNIT-I : Algebra								
	Group – Subgroups – Cyclic Group – Permulation Groups – Lagrange's								
	theorem - Normal groups - Homomorphism - Cayley's theorem -								
	Sylow's theorems – Rings (Definitions with Examples) – Vector Space (
	Definitions with Examples)								
	UNIT-II : Real Analysis								
	Sequences and series of functions – uniform convergence – Metric Space								
	- discontinuities - Riemann Integral - Improper Integrals - Monotonic								
	functions – Lebesgue measure – Lebesgue integral								
	UNIT-III : Complex Analysis								
	Analytic functions – Cauchy-Riemann equations – Cauchy's integral								
	formula – Liouville's theorem – Maximum modulus principle –Taylor								
	series – Laurent series – Calculus of Residues.								
	UNIT-IV :Operations Research								
	Linear programming problem – Transportation problem – Game theory –								
	Queuing Theory – Inventory models – Network Analysis.								
	UNIT-V: Probability & Statistics								
	Measures of Central Tendency – Measures of Dispersion – Baye's								
	Theorem – Correlation and Regression – sampling distributions of t, F and								
	Chi square (Definitions with Simple Problems)								
Extended Professional	Questions related to the above topics, from vario	ous competitive							
Component (is a part of	examinations UPSC / TRB / NET / UGC – CSIR / GA	ATE / TNPSC /							
internal component only,	others to be solved								
Not to be included in the	(To be discussed during the Tutorial hour)								
External Examination									
question paper)									
Skills acquired from this	Knowledge, Problem Solving, Analytical ability	, Professional							
course	Competency, Professional Communication and Transferrable Skill								

Recommended Text	Unit-I: I.N. Herstein. <i>Topics in Algebra</i> (II Edition) Wiley Eastern				
	Limited, New Delhi, 1975.				
	Chapter 2 : 2.1 to 2.12 (omit 2.3,2.5,2.8)				
	Chapter 2: 3.1. 3.3. & Chapter 4: 4.1. 4.2.				
	Unit-II: Tom M.Apostol : Mathematical Analysis, 2 nd Edition,				
	Addison-Wesley Publishing Company Inc. New York, 1974.				
	Chapter 9: 9.1 to 9.6., Chapter 3: 3.13,				
	Chapter 10: 10.3 to 10.10, 10.13, 10.19. Chapter 4: 4.22.				
	Unit-III: L.V. Ahlfors , <i>Complex Analysis</i> , Third Edition, McGraw Hill, New York, 1979.				
	Chapter 2: 1.2, Chapter 4: 2.1 to 2.3 & 5.1 to 5.3.				
	Chapter 5: 1.2, 1.3.				
	Unit-IV: Hamdy A. Taha, <i>Operation Research an Introduction</i> , Eighth Edition, Pearson Prentice Hall.				
	Chapter 3: 3.3 Chapter 5: 5.1 to 5.3 Chaptre 13: 13.4				
	Chapter 15: 15 1 to 15.6 Chapter 11: 11.1 to 11.4				
	Chapter 6: 6 5				
	Unit-V: S.C. Gupta & V.K. Kapoor: <i>Fundamentals of Mathematical</i> <i>Statistics</i> , Sultan & sons.				
	Chapter 2: 2.5 to 2.7. Chapter 3: 3.4 to 3.8. 3.13. 3.14.				
	Chapter 4: 4.8. Chapter 10: 10.3. 10.4. 10.7.				
	Chapter 13: 13.1 Chapter 14: 14.2.14.5				
	Chapter 13, 13,1, Chapter 14, 14,2, 14,3.				
Reference Books	1 Arumugam S Isaac A T <i>Modern Algebra</i> Scitech Publications				
	2. Richard R.Goldberg. <i>Methods of Real Analysis</i> . Oxford &IBH				
	Publishing Co.Pvt.Ltd, New Delhi.				
	3. S.Arumugam.A.Thangapandi Isaac, A. Somasundaram, <i>Complex</i>				
	Analysis, Scitech Publications.				
	4. J.K.Sharma, Operations Research Theory and Applications, 6 th				
	Edition, Trinity Press.				
	5.P.R. Vital, V.Malini, Statistical and Numerical Methods, Margam				
	Publications, 2019.				
Website and	1. https://onlinecourses.nptel.ac.in/noc19_ma29/prev				
e-Learning Source	2. https://archive.nptel.ac.in/courses/111/107/111107104/				
	3. https://onlinecourses.nptel.ac.in/noc21_mg74/preview				
	4. https://inathworld.wollram.com/topics/Optimization.html				

Course Learning Outcome (for Mapping with POs and PSOs)

Students will be able to

CLO 1-Understand the concept of the Algebraic concepts.

CLO 2-Understand the concept of the Real analytical concepts.

CLO 3-Understand the concept of the Complex Analytical concepts.

CLO 4-Understand the Operations Research problems.

CLO 5-Understand the problems of Statistics and Probability.

	Pos				PSOs				
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

SEMESTER: IV PART: C	23PMATX46: Extension Activity	CREDIT: 1 HOURS: -
-------------------------	-------------------------------	-----------------------

(Refer to the Regulations)